These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 39291319)
1. Latest progress and challenges associated with lithium-ion semi-solid flow batteries: a critical review. He M; Zhou X; Liu J Phys Chem Chem Phys; 2024 Oct; 26(38):24735-24752. PubMed ID: 39291319 [TBL] [Abstract][Full Text] [Related]
2. Recent progresses and challenges in aqueous lithium-air batteries relating to the solid electrolyte separator: A mini-review. Chen P; Bai F; Deng JW; Liu B; Zhang T Front Chem; 2022; 10():1035691. PubMed ID: 36300027 [TBL] [Abstract][Full Text] [Related]
3. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165 [TBL] [Abstract][Full Text] [Related]
4. Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. Tian Y; Zeng G; Rutt A; Shi T; Kim H; Wang J; Koettgen J; Sun Y; Ouyang B; Chen T; Lun Z; Rong Z; Persson K; Ceder G Chem Rev; 2021 Feb; 121(3):1623-1669. PubMed ID: 33356176 [TBL] [Abstract][Full Text] [Related]
5. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Wu F; Maier J; Yu Y Chem Soc Rev; 2020 Mar; 49(5):1569-1614. PubMed ID: 32055806 [TBL] [Abstract][Full Text] [Related]
6. Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Zhao M; Li BQ; Peng HJ; Yuan H; Wei JY; Huang JQ Angew Chem Int Ed Engl; 2020 Jul; 59(31):12636-12652. PubMed ID: 31490599 [TBL] [Abstract][Full Text] [Related]
7. Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review. Chattopadhyay J; Pathak TS; Santos DMF Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835955 [TBL] [Abstract][Full Text] [Related]
8. High-Capacity CuSi Zhang X; Li W; Chen H ACS Appl Mater Interfaces; 2021 Sep; 13(34):40552-40561. PubMed ID: 34423636 [TBL] [Abstract][Full Text] [Related]
9. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100 [TBL] [Abstract][Full Text] [Related]
10. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
11. Materials Design and Mechanistic Understanding of Tellurium and Tellurium-Sulfur Cathodes for Rechargeable Batteries. Zhang Y; Liu J Acc Chem Res; 2024 Sep; 57(17):2500-2511. PubMed ID: 39137405 [TBL] [Abstract][Full Text] [Related]
12. A review of improvements on electric vehicle battery. Koech AK; Mwandila G; Mulolani F Heliyon; 2024 Aug; 10(15):e34806. PubMed ID: 39170484 [TBL] [Abstract][Full Text] [Related]
14. More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Fang R; Zhao S; Sun Z; Wang DW; Cheng HM; Li F Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28380284 [TBL] [Abstract][Full Text] [Related]
15. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
16. Challenges and Solutions for Low-Temperature Lithium-Sulfur Batteries: A Review. Liu Y; Qin T; Wang P; Yuan M; Li Q; Feng S Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374546 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198 [TBL] [Abstract][Full Text] [Related]