These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39291395)
1. SlipO Cui Y; Moreira MA; Whalen KE; Barbe L; Shi Q; Koren K; Tenje M; Behrendt L Lab Chip; 2024 Oct; 24(20):4786-4797. PubMed ID: 39291395 [TBL] [Abstract][Full Text] [Related]
2. A facile single-cell patterning strategy based on harbor-like microwell microfluidics. Sun Y; Liu Y; Sun D; Liu K; Li Y; Liu Y; Zhang S Biomed Mater; 2024 May; 19(4):. PubMed ID: 38772387 [TBL] [Abstract][Full Text] [Related]
3. A valve-based microfluidic device for on-chip single cell treatments. Sun Y; Cai B; Wei X; Wang Z; Rao L; Meng QF; Liao Q; Liu W; Guo S; Zhao X Electrophoresis; 2019 Mar; 40(6):961-968. PubMed ID: 30155963 [TBL] [Abstract][Full Text] [Related]
4. High throughput single-cell and multiple-cell micro-encapsulation. Lagus TP; Edd JF J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254 [TBL] [Abstract][Full Text] [Related]
5. Single-cell chemical lysis on microfluidic chips with arrays of microwells. Jen CP; Hsiao JH; Maslov NA Sensors (Basel); 2012; 12(1):347-58. PubMed ID: 22368473 [TBL] [Abstract][Full Text] [Related]
6. Self-seeding microwell chip for the isolation and characterization of single cells. Swennenhuis JF; Tibbe AG; Stevens M; Katika MR; van Dalum J; Tong HD; van Rijn CJ; Terstappen LW Lab Chip; 2015 Jul; 15(14):3039-46. PubMed ID: 26082273 [TBL] [Abstract][Full Text] [Related]
7. A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level. Fu W; Wang S; Ouyang Q; Luo C Integr Biol (Camb); 2024 Jan; 16():. PubMed ID: 38900168 [TBL] [Abstract][Full Text] [Related]
8. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Chen Q; Wu J; Zhang Y; Lin Z; Lin JM Lab Chip; 2012 Dec; 12(24):5180-5. PubMed ID: 23108418 [TBL] [Abstract][Full Text] [Related]
9. Microchambers with Solid-State Phosphorescent Sensor for Measuring Single Mitochondrial Respiration. Pham TD; Wallace DC; Burke PJ Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27409618 [TBL] [Abstract][Full Text] [Related]
10. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation. Breukers J; Horta S; Struyfs C; Spasic D; Feys HB; Geukens N; Thevissen K; Cammue BPA; Vanhoorelbeke K; Lammertyn J ACS Appl Mater Interfaces; 2021 Jan; 13(2):2316-2326. PubMed ID: 33411502 [TBL] [Abstract][Full Text] [Related]
11. Lab-on-chip device for single cell trapping and analysis. Shah P; Zhu X; Chen C; Hu Y; Li CZ Biomed Microdevices; 2014 Feb; 16(1):35-41. PubMed ID: 23948962 [TBL] [Abstract][Full Text] [Related]
12. A microfluidic alternating-pull-push active digitization method for sample-loss-free digital PCR. Zhou X; Ravichandran GC; Zhang P; Yang Y; Zeng Y Lab Chip; 2019 Dec; 19(24):4104-4116. PubMed ID: 31720646 [TBL] [Abstract][Full Text] [Related]
13. Centrifugation-Assisted Single-Cell Trapping in a Truncated Cone-Shaped Microwell Array Chip for the Real-Time Observation of Cellular Apoptosis. Huang L; Chen Y; Chen Y; Wu H Anal Chem; 2015 Dec; 87(24):12169-76. PubMed ID: 26579559 [TBL] [Abstract][Full Text] [Related]
14. The Minderoo-Monaco Commission on Plastics and Human Health. Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097 [TBL] [Abstract][Full Text] [Related]
15. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes. Nakazawa K; Yoshiura Y; Koga H; Sakai Y J Biosci Bioeng; 2013 Nov; 116(5):628-33. PubMed ID: 23735328 [TBL] [Abstract][Full Text] [Related]
16. Metabolic profile analysis of a single developing zebrafish embryo via monitoring of oxygen consumption rates within a microfluidic device. Huang SH; Huang KS; Yu CH; Gong HY Biomicrofluidics; 2013; 7(6):64107. PubMed ID: 24396541 [TBL] [Abstract][Full Text] [Related]
17. An integrated microwell array platform for cell lasing analysis. Chen Q; Chen YC; Zhang Z; Wu B; Coleman R; Fan X Lab Chip; 2017 Aug; 17(16):2814-2820. PubMed ID: 28714506 [TBL] [Abstract][Full Text] [Related]
18. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids. Weltin A; Hammer S; Noor F; Kaminski Y; Kieninger J; Urban GA Biosens Bioelectron; 2017 Jan; 87():941-948. PubMed ID: 27665516 [TBL] [Abstract][Full Text] [Related]
19. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Park MC; Hur JY; Cho HS; Park SH; Suh KY Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a single cell of Chlorella in a microfluidic channel using amperometric electrode arrays. Song YS; Bai SJ Biotechnol Lett; 2014 Nov; 36(11):2185-91. PubMed ID: 24966046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]