These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39291617)
1. Emergence of superconductivity by intercalation of alkali metals and alkaline earth metals in Janus transition-metal dichalcogenide heterostructures. Er-Rahmany S; Loulidi M; El Kenz A; Benyoussef A; Balli M; Azzouz M Phys Chem Chem Phys; 2024 Oct; 26(38):24881-24893. PubMed ID: 39291617 [TBL] [Abstract][Full Text] [Related]
2. Prediction of superconductivity in Li, K, Ca, and Sr-intercalated blue phosphorene bilayer using first-principle calculations. Er-Rahmany S; Loulidi M; El Kenz A; Benyoussef A; Balli M; Azzouz M J Phys Condens Matter; 2023 Feb; 35(13):. PubMed ID: 36693282 [TBL] [Abstract][Full Text] [Related]
3. First-principles investigation of potential water-splitting photocatalysts and photovoltaic materials based on Janus transition-metal dichalcogenide/WSe Ayele ST; Obodo KO; Asres GA RSC Adv; 2022 Nov; 12(49):31518-31524. PubMed ID: 36380918 [TBL] [Abstract][Full Text] [Related]
4. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers. Qin H; Ren K; Zhang G; Dai Y; Zhang G Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic Signatures of Interlayer Coupling in Janus MoSSe/MoS Zhang K; Guo Y; Larson DT; Zhu Z; Fang S; Kaxiras E; Kong J; Huang S ACS Nano; 2021 Sep; 15(9):14394-14403. PubMed ID: 34463476 [TBL] [Abstract][Full Text] [Related]
6. The mirror asymmetry induced nontrivial properties of polar WSSe/MoSSe heterostructures. Wang Y; Wei W; Huang B; Dai Y J Phys Condens Matter; 2019 Mar; 31(12):125003. PubMed ID: 30654357 [TBL] [Abstract][Full Text] [Related]
7. The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study. Guo W; Ge X; Sun S; Xie Y; Ye X Phys Chem Chem Phys; 2020 Mar; 22(9):4946-4956. PubMed ID: 32073069 [TBL] [Abstract][Full Text] [Related]
8. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH) Lou J; Ren K; Huang Z; Huo W; Zhu Z; Yu J RSC Adv; 2021 Sep; 11(47):29576-29584. PubMed ID: 35479544 [TBL] [Abstract][Full Text] [Related]
9. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Idrees M; Din HU; Rehman SU; Shafiq M; Saeed Y; Bui HD; Nguyen CV; Amin B Phys Chem Chem Phys; 2020 May; 22(18):10351-10359. PubMed ID: 32365147 [TBL] [Abstract][Full Text] [Related]
10. Stacking engineering induced Z-scheme MoSSe/WSSe heterostructure for photocatalytic water splitting. Ren L; Liu Z; Ma Z; Ren K; Cui Z; Mu W Front Chem; 2024; 12():1425306. PubMed ID: 39006489 [TBL] [Abstract][Full Text] [Related]
11. Bilayers of Janus WSSe: monitoring the stacking type via the vibrational spectrum. Kandemir A; Sahin H Phys Chem Chem Phys; 2018 Jun; 20(25):17380-17386. PubMed ID: 29905346 [TBL] [Abstract][Full Text] [Related]
12. Superconductivity in bilayer graphene intercalated with alkali and alkaline earth metals. Durajski AP; Skoczylas KM; Szczȩśniak R Phys Chem Chem Phys; 2019 Mar; 21(11):5925-5931. PubMed ID: 30785457 [TBL] [Abstract][Full Text] [Related]
13. Excitonic Dynamics in Janus MoSSe and WSSe Monolayers. Zheng T; Lin YC; Yu Y; Valencia-Acuna P; Puretzky AA; Torsi R; Liu C; Ivanov IN; Duscher G; Geohegan DB; Ni Z; Xiao K; Zhao H Nano Lett; 2021 Jan; 21(2):931-937. PubMed ID: 33405934 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear Optical and Photocurrent Responses in Janus MoSSe Monolayer and MoS Strasser A; Wang H; Qian X Nano Lett; 2022 May; 22(10):4145-4152. PubMed ID: 35532538 [TBL] [Abstract][Full Text] [Related]
15. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides. Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211 [TBL] [Abstract][Full Text] [Related]
16. Janus transition metal dichalcogenides in combination with MoS Beshir BT; Obodo KO; Asres GA RSC Adv; 2022 May; 12(22):13749-13755. PubMed ID: 35530386 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560 [TBL] [Abstract][Full Text] [Related]
18. Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study. Yu L; Sun S; Ye X Phys Chem Chem Phys; 2020 Jan; 22(4):2498-2508. PubMed ID: 31939967 [TBL] [Abstract][Full Text] [Related]
19. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Idrees M; Din HU; Ali R; Rehman G; Hussain T; Nguyen CV; Ahmad I; Amin B Phys Chem Chem Phys; 2019 Aug; 21(34):18612-18621. PubMed ID: 31414085 [TBL] [Abstract][Full Text] [Related]
20. Janus monolayers of transition metal dichalcogenides. Lu AY; Zhu H; Xiao J; Chuu CP; Han Y; Chiu MH; Cheng CC; Yang CW; Wei KH; Yang Y; Wang Y; Sokaras D; Nordlund D; Yang P; Muller DA; Chou MY; Zhang X; Li LJ Nat Nanotechnol; 2017 Aug; 12(8):744-749. PubMed ID: 28507333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]