These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39291745)
1. Discovery of Hypoxanthine and Inosine as Robust Biomarkers for Predicting the Preanalytical Quality of Human Plasma and Serum for Metabolomics. Nagana Gowda GA; Pascua V; Hill L; Djukovic D; Wang D; Raftery D Anal Chem; 2024 Oct; 96(39):15754-15764. PubMed ID: 39291745 [TBL] [Abstract][Full Text] [Related]
2. Dialysis modality-dependent changes in serum metabolites: accumulation of inosine and hypoxanthine in patients on haemodialysis. Choi JY; Yoon YJ; Choi HJ; Park SH; Kim CD; Kim IS; Kwon TH; Do JY; Kim SH; Ryu DH; Hwang GS; Kim YL Nephrol Dial Transplant; 2011 Apr; 26(4):1304-13. PubMed ID: 20844182 [TBL] [Abstract][Full Text] [Related]
3. Release of adenosine, inosine and hypoxanthine from rabbit non-myelinated nerve fibres at rest and during activity. Maire JC; Medilanski J; Straub RW J Physiol; 1984 Dec; 357():67-77. PubMed ID: 6512706 [TBL] [Abstract][Full Text] [Related]
4. A rapid and simple chemiluminescence method for screening levels of inosine and hypoxanthine in non-traumatic chest pain patients. Farthing DE; Sica D; Hindle M; Edinboro L; Xi L; Gehr TW; Gehr L; Farthing CA; Larus TL; Fakhry I; Karnes HT Luminescence; 2011; 26(1):65-75. PubMed ID: 20017127 [TBL] [Abstract][Full Text] [Related]
5. Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. Bell MJ; Kochanek PM; Carcillo JA; Mi Z; Schiding JK; Wisniewski SR; Clark RS; Dixon CE; Marion DW; Jackson E J Neurotrauma; 1998 Mar; 15(3):163-70. PubMed ID: 9528916 [TBL] [Abstract][Full Text] [Related]
6. Purine accumulation in human fat cell suspensions. Evidence that human adipocytes release inosine and hypoxanthine rather than adenosine. Kather H J Biol Chem; 1988 Jun; 263(18):8803-9. PubMed ID: 3379046 [TBL] [Abstract][Full Text] [Related]
7. Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: from bench to point-of-care. Farthing DE; Farthing CA; Xi L Exp Biol Med (Maywood); 2015 Jun; 240(6):821-31. PubMed ID: 25956679 [TBL] [Abstract][Full Text] [Related]
8. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. Sabina RL; Swain JL; Olanow CW; Bradley WG; Fishbein WN; DiMauro S; Holmes EW J Clin Invest; 1984 Mar; 73(3):720-30. PubMed ID: 6707201 [TBL] [Abstract][Full Text] [Related]
9. Assessment of purine metabolism in human renal transplantation. Vigués F; Ambrosio S; Franco E; Bartrons R Transplantation; 1993 Apr; 55(4):733-6. PubMed ID: 8475544 [TBL] [Abstract][Full Text] [Related]
10. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. Hagberg H; Andersson P; Lacarewicz J; Jacobson I; Butcher S; Sandberg M J Neurochem; 1987 Jul; 49(1):227-31. PubMed ID: 3585332 [TBL] [Abstract][Full Text] [Related]
11. Secretory mechanisms. Behaviour of adenine nucleotides during the platelet release reaction induced by adenosine diphosphate and adrenaline. Holmsen H; Day HJ; Setkowsky CA Biochem J; 1972 Aug; 129(1):67-82. PubMed ID: 4675006 [TBL] [Abstract][Full Text] [Related]
12. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa). Barjau Pérez-Milicua M; Zenteno-Savín T; Crocker DE; Gallo-Reynoso JP Front Physiol; 2015; 6():212. PubMed ID: 26283971 [TBL] [Abstract][Full Text] [Related]
13. Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. Barsotti C; Ipata PL Int J Biochem Cell Biol; 2004 Nov; 36(11):2214-25. PubMed ID: 15313467 [TBL] [Abstract][Full Text] [Related]
14. Hypoxanthine nucleotides synthesis in fresh and stored human erythrocytes. Zachara B; Klem J; Kopff M Acta Biol Med Ger; 1981; 40(4-5):683-9. PubMed ID: 7315115 [TBL] [Abstract][Full Text] [Related]
15. Preservation of high-energy phosphates by verapamil in reperfused myocardium. Lange R; Ingwall J; Hale SL; Alker KJ; Braunwald E; Kloner RA Circulation; 1984 Oct; 70(4):734-41. PubMed ID: 6478571 [TBL] [Abstract][Full Text] [Related]
16. The effect of inosine, pyruvate, and inorganic phosphate on 2,3-diphosphoglycerate, adenine, and hypoxanthine nucleotide synthesis in outdated human erythrocytes. Zachara B J Lab Clin Med; 1975 Mar; 85(3):436-44. PubMed ID: 1117206 [TBL] [Abstract][Full Text] [Related]
17. Inosine monophosphate production is proportional to muscle force in vitro. Brooke MH; Choksi R; Kaiser KK Neurology; 1986 Feb; 36(2):288-91. PubMed ID: 3945403 [TBL] [Abstract][Full Text] [Related]
18. Pathways of purine metabolism in human adipocytes. Further evidence against a role of adenosine as an endogenous regulator of human fat cell function. Kather H J Biol Chem; 1990 Jan; 265(1):96-102. PubMed ID: 2294125 [TBL] [Abstract][Full Text] [Related]
19. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Yin P; Peter A; Franken H; Zhao X; Neukamm SS; Rosenbaum L; Lucio M; Zell A; Häring HU; Xu G; Lehmann R Clin Chem; 2013 May; 59(5):833-45. PubMed ID: 23386698 [TBL] [Abstract][Full Text] [Related]
20. Effect of mycophenolate mofetil therapy on inosine monophosphate dehydrogenase induction in red blood cells of heart transplant recipients. Weigel G; Griesmacher A; Zuckermann AO; Laufer G; Mueller MM Clin Pharmacol Ther; 2001 Mar; 69(3):137-44. PubMed ID: 11240978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]