These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39291906)
1. Surface Reconstruction Enhanced Li-Rich Cathode Materials for Durable Lithium-Ion Batteries. Zhao Y; Lu D; Yun X; Wang J; Song W; Xie W; Zuo L; Zheng C; Xiao P; Chen Y Small Methods; 2024 Sep; ():e2401221. PubMed ID: 39291906 [TBL] [Abstract][Full Text] [Related]
2. Lithium-Ion Conductor Li Chen J; Cao S; Li Z; Li H; Guo C; Wang R; Wu L; Zhang Y; Bai Y; Wang X ACS Appl Mater Interfaces; 2023 Aug; 15(30):36394-36403. PubMed ID: 37479676 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional Surface Construction for Long-Term Cycling Stability of Li-Rich Mn-Based Layered Oxide Cathode for Li-Ion Batteries. Yan C; Shao Q; Yao Z; Gao M; Zhang C; Chen G; Sun Q; Sun W; Liu Y; Gao M; Pan H Small; 2022 Oct; 18(43):e2107910. PubMed ID: 35768284 [TBL] [Abstract][Full Text] [Related]
4. Insight into the Surface Reconstruction-Induced Structure and Electrochemical Performance Evolution for Ni-Rich Cathodes with Postannealing after Washing. He FR; Tian ZQ; Xiang W; Yang W; Zheng BP; Cai JY; Guo XD ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36762445 [TBL] [Abstract][Full Text] [Related]
5. A Molten-Salt Method to Synthesize Ultrahigh-Nickel Single-Crystalline LiNi Lv F; Zhang Y; Wu M; Gu Y Small; 2022 Jul; 18(28):e2201946. PubMed ID: 35699693 [TBL] [Abstract][Full Text] [Related]
6. Mitigating the Surface Reconstruction of Ni-Rich Cathode Liu X; Hao J; Zhang M; Zheng B; Zhao D; Cheng Y; He Z; Su M; Xie C; Luo M; Shan P; Tao M; Liang Z; Xiang Y; Yang Y ACS Appl Mater Interfaces; 2022 Jul; 14(26):30398-30409. PubMed ID: 35748137 [TBL] [Abstract][Full Text] [Related]
7. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Yun S; Yu J; Lee W; Lee H; Yoon WS Mater Horiz; 2023 Mar; 10(3):829-841. PubMed ID: 36597945 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. Chu M; Huang Z; Zhang T; Wang R; Shao T; Wang C; Zhu W; He L; Chen J; Zhao W; Xiao Y ACS Appl Mater Interfaces; 2021 May; 13(17):19950-19958. PubMed ID: 33891814 [TBL] [Abstract][Full Text] [Related]
9. Double-Salts Super Concentrated Carbonate Electrolyte Boosting Electrochemical Performance of Ni-Rich LiNi Yang Q; Liu Q; Tan G; Li L; Chen R; Wu F Small; 2024 Aug; 20(32):e2311650. PubMed ID: 38764187 [TBL] [Abstract][Full Text] [Related]
10. Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries. Liu H; Zhao X; Xie Y; Luo S; Wang Z; Zhu L; Zhang X ACS Appl Mater Interfaces; 2022 Dec; 14(50):55491-55502. PubMed ID: 36503239 [TBL] [Abstract][Full Text] [Related]
11. Surface Engineering and Trace Cobalt Doping Suppress Overall Li/Ni Mixing of Li-rich Mn-based Cathode Materials. Chen J; Huang Z; Zeng W; Ma J; Cao F; Wang T; Tian W; Mu S ACS Appl Mater Interfaces; 2022 Feb; 14(5):6649-6657. PubMed ID: 35080843 [TBL] [Abstract][Full Text] [Related]
12. Molten-Salt-Assisted Strategy Enables High-Rate Micron-Sized Single-Crystal Li-Rich, Mn-Based Layered Oxide Cathode Materials. Liu K; Zhang Q; Lu Z; Zhu H; Song M; Chen L; Zhang C; Wei W ACS Appl Mater Interfaces; 2024 Mar; 16(12):14902-14911. PubMed ID: 38484086 [TBL] [Abstract][Full Text] [Related]
13. Significant Enhancement of the Capacity and Cycling Stability of Lithium-Rich Manganese-Based Layered Cathode Materials via Molybdenum Surface Modification. Shao Y; Lu Z; Li L; Liu Y; Yang L; Shu T; Li X; Liao S Molecules; 2022 Mar; 27(7):. PubMed ID: 35408499 [TBL] [Abstract][Full Text] [Related]
14. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries. Tai Z; Li X; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Jun; 570():264-272. PubMed ID: 32163788 [TBL] [Abstract][Full Text] [Related]
15. Concerted Effect of Ion- and Electron-Conductive Additives on the Electrochemical and Thermal Performances of the LiNi Mengesha TH; Jeyakumar J; Hendri YB; Wu YS; Yang CC; Pham QT; Chern CS; Brunklaus G; Winter M; Hwang BJ ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38606845 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries. Ahn J; Kim JH; Cho BW; Chung KY; Kim S; Choi JW; Oh SH Nano Lett; 2017 Dec; 17(12):7869-7877. PubMed ID: 29144142 [TBL] [Abstract][Full Text] [Related]
18. Heat-Treatment-Assisted Molten-Salt Strategy to Enhance Electrochemical Performances of Li-Rich Assembled Microspheres by Tailoring Their Surface Features. Li B; Zhang D; Li G; Fan J; Chen D; Ge Y; Li L Chemistry; 2019 Feb; 25(8):2003-2010. PubMed ID: 30421514 [TBL] [Abstract][Full Text] [Related]
19. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812 [TBL] [Abstract][Full Text] [Related]
20. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]