These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 39292638)
1. Macromorphological Control of Zr-Based Metal-Organic Frameworks for Hydrolysis of a Nerve Agent Simulant. Gibbons B; Johnson EM; Javed MK; Yang X; Morris AJ ACS Appl Mater Interfaces; 2024 Oct; 16(39):52703-52711. PubMed ID: 39292638 [TBL] [Abstract][Full Text] [Related]
2. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks. Liao Y; Sheridan T; Liu J; Farha O; Hupp J ACS Appl Mater Interfaces; 2021 Jul; 13(26):30565-30575. PubMed ID: 34161064 [TBL] [Abstract][Full Text] [Related]
3. Detoxification of Chemical Warfare Agents Using a Zr Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019 [TBL] [Abstract][Full Text] [Related]
4. Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Gibbons B; Bartlett EC; Cai M; Yang X; Johnson EM; Morris AJ Inorg Chem; 2021 Nov; 60(21):16378-16387. PubMed ID: 34672622 [TBL] [Abstract][Full Text] [Related]
5. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant. Wu G; Zhang B; Zhang H; Zhang X; Hu X; Meng X; Wu J; Hou H Inorg Chem; 2024 Jul; 63(27):12658-12666. PubMed ID: 38916863 [TBL] [Abstract][Full Text] [Related]
6. Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts. Kiaei K; Nord MT; Chiu NC; Stylianou KC ACS Appl Mater Interfaces; 2022 May; 14(17):19747-19755. PubMed ID: 35445601 [TBL] [Abstract][Full Text] [Related]
7. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Plonka AM; Wang Q; Gordon WO; Balboa A; Troya D; Guo W; Sharp CH; Senanayake SD; Morris JR; Hill CL; Frenkel AI J Am Chem Soc; 2017 Jan; 139(2):599-602. PubMed ID: 28038315 [TBL] [Abstract][Full Text] [Related]
8. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics. Yao A; Jiao X; Chen D; Li C ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436 [TBL] [Abstract][Full Text] [Related]
9. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs. Ghasempour H; Morsali A Chemistry; 2020 Dec; 26(72):17437-17444. PubMed ID: 32757398 [TBL] [Abstract][Full Text] [Related]
10. UiO-66-NH Lee DT; Zhao J; Oldham CJ; Peterson GW; Parsons GN ACS Appl Mater Interfaces; 2017 Dec; 9(51):44847-44855. PubMed ID: 29165990 [TBL] [Abstract][Full Text] [Related]
11. Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants. Yao A; Jiao X; Chen D; Li C ACS Appl Mater Interfaces; 2020 Apr; 12(16):18437-18445. PubMed ID: 32202409 [TBL] [Abstract][Full Text] [Related]
12. Zirconium-based MOF nanocrystals confined on amphoteric halloysite nanotubes for promoting the catalytic hydrolysis of an organophosphorus nerve agent simulant. Li S; Zhang H; Wu G; Wu J; Hou H Dalton Trans; 2023 May; 52(20):6899-6905. PubMed ID: 37158285 [TBL] [Abstract][Full Text] [Related]
13. Spray-Coating of Catalytically Active MOF-Polythiourea through Postsynthetic Polymerization. Kalaj M; Cohen SM Angew Chem Int Ed Engl; 2020 Aug; 59(33):13984-13989. PubMed ID: 32369673 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of macroscopic monolithic metal-organic gels for ultra-fast destruction of chemical warfare agents. Zhou C; Zhang S; Pan H; Yang G; Wang L; Tao CA; Li H RSC Adv; 2021 Jun; 11(36):22125-22130. PubMed ID: 35480835 [TBL] [Abstract][Full Text] [Related]
15. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. Ploskonka AM; DeCoste JB J Hazard Mater; 2019 Aug; 375():191-197. PubMed ID: 31059988 [TBL] [Abstract][Full Text] [Related]
16. Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal-Organic Frameworks. Chen Z; Li P; Wang X; Otake KI; Zhang X; Robison L; Atilgan A; Islamoglu T; Hall MG; Peterson GW; Stoddart JF; Farha OK J Am Chem Soc; 2019 Aug; 141(31):12229-12235. PubMed ID: 31343872 [TBL] [Abstract][Full Text] [Related]
17. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks. Moon SY; Wagner GW; Mondloch JE; Peterson GW; DeCoste JB; Hupp JT; Farha OK Inorg Chem; 2015 Nov; 54(22):10829-33. PubMed ID: 26505999 [TBL] [Abstract][Full Text] [Related]
18. Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH Zhou C; Yuan B; Zhang S; Yang G; Lu L; Li H; Tao CA ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35549001 [TBL] [Abstract][Full Text] [Related]
19. Toxic Organophosphate Hydrolysis Using Nanofiber-Templated UiO-66-NH Dwyer DB; Lee DT; Boyer S; Bernier WE; Parsons GN; Jones WE ACS Appl Mater Interfaces; 2018 Aug; 10(30):25794-25803. PubMed ID: 29972296 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Adsorption and Mass Transfer of Hierarchically Porous Zr-MOF Nanoarchitectures toward Toxic Chemical Removal. Wang X; Su R; Zhao Y; Guo W; Gao S; Li K; Liang G; Luan Z; Li L; Xi H; Zou R ACS Appl Mater Interfaces; 2021 Dec; 13(49):58848-58861. PubMed ID: 34855367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]