These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 39294152)
1. AMD-SD: An Optical Coherence Tomography Image Dataset for wet AMD Lesions Segmentation. Hu Y; Gao Y; Gao W; Luo W; Yang Z; Xiong F; Chen Z; Lin Y; Xia X; Yin X; Deng Y; Ma L; Li G Sci Data; 2024 Sep; 11(1):1014. PubMed ID: 39294152 [TBL] [Abstract][Full Text] [Related]
2. Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2009; 9(13):1-22. PubMed ID: 23074517 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Moraes G; Fu DJ; Wilson M; Khalid H; Wagner SK; Korot E; Ferraz D; Faes L; Kelly CJ; Spitz T; Patel PJ; Balaskas K; Keenan TDL; Keane PA; Chopra R Ophthalmology; 2021 May; 128(5):693-705. PubMed ID: 32980396 [TBL] [Abstract][Full Text] [Related]
4. Differentiating Exudative Macular Degeneration and Polypoidal Choroidal Vasculopathy Using OCT B-Scan. Kokame GT; Omizo JN; Kokame KA; Yamane ML Ophthalmol Retina; 2021 Oct; 5(10):954-961. PubMed ID: 34022443 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of an Artificial Intelligence-Based Detector of Sub- and Intraretinal Fluid on a Large Set of Optical Coherence Tomography Volumes in Age-Related Macular Degeneration and Diabetic Macular Edema. Habra O; Gallardo M; Meyer Zu Westram T; De Zanet S; Jaggi D; Zinkernagel M; Wolf S; Sznitman R Ophthalmologica; 2022; 245(6):516-527. PubMed ID: 36215958 [TBL] [Abstract][Full Text] [Related]
6. Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans. Moradi M; Chen Y; Du X; Seddon JM Comput Biol Med; 2023 Mar; 154():106512. PubMed ID: 36701964 [TBL] [Abstract][Full Text] [Related]
7. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
8. RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network. Sappa LB; Okuwobi IP; Li M; Zhang Y; Xie S; Yuan S; Chen Q J Digit Imaging; 2021 Jun; 34(3):691-704. PubMed ID: 34080105 [TBL] [Abstract][Full Text] [Related]
9. DIAGNOSIS OF TYPE 3 NEOVASCULARIZATION BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES. Kim JH; Chang YS; Kim JW; Lee TG; Kim HS Retina; 2016 Aug; 36(8):1506-15. PubMed ID: 27359259 [TBL] [Abstract][Full Text] [Related]
11. A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images. Philippi D; Rothaus K; Castelli M Sci Rep; 2023 Jan; 13(1):517. PubMed ID: 36627357 [TBL] [Abstract][Full Text] [Related]
12. Optical Coherence Tomography Features Preceding the Onset of Advanced Age-Related Macular Degeneration. Ferrara D; Silver RE; Louzada RN; Novais EA; Collins GK; Seddon JM Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3519-3529. PubMed ID: 28715590 [TBL] [Abstract][Full Text] [Related]
13. OIMHS: An Optical Coherence Tomography Image Dataset Based on Macular Hole Manual Segmentation. Ye X; He S; Zhong X; Yu J; Yang S; Shen Y; Chen Y; Wang Y; Huang X; Shen L Sci Data; 2023 Nov; 10(1):769. PubMed ID: 37932307 [TBL] [Abstract][Full Text] [Related]
14. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
15. Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Sayanagi K; Sharma S; Yamamoto T; Kaiser PK Ophthalmology; 2009 May; 116(5):947-55. PubMed ID: 19232732 [TBL] [Abstract][Full Text] [Related]
16. Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy. Golbaz I; Ahlers C; Stock G; Schütze C; Schriefl S; Schlanitz F; Simader C; Prünte C; Schmidt-Erfurth UM Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1599-605. PubMed ID: 21051733 [TBL] [Abstract][Full Text] [Related]
17. Automated segmentation of pathological cavities in optical coherence tomography scans. Pilch M; Stieger K; Wenner Y; Preising MN; Friedburg C; Meyer zu Bexten E; Lorenz B Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4385-93. PubMed ID: 23737469 [TBL] [Abstract][Full Text] [Related]
18. Comparison of features on SD-OCT between acute central serous chorioretinopathy and exudative age-related macular degeneration. Ahn SJ; Kim TW; Huh JW; Yu HG; Chung H Ophthalmic Surg Lasers Imaging; 2012; 43(5):374-82. PubMed ID: 22767337 [TBL] [Abstract][Full Text] [Related]
19. Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration. Lee H; Kang KE; Chung H; Kim HC Am J Ophthalmol; 2018 Jul; 191():64-75. PubMed ID: 29655643 [TBL] [Abstract][Full Text] [Related]