These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 39294263)

  • 1. Highly sensitive site-specific SUMOylation proteomics in Arabidopsis.
    Sang T; Xu Y; Qin G; Zhao S; Hsu CC; Wang P
    Nat Plants; 2024 Sep; 10(9):1330-1342. PubMed ID: 39294263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis.
    Ingole KD; Dahale SK; Bhattacharjee S
    J Proteomics; 2021 Feb; 232():104054. PubMed ID: 33238213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis.
    Miller MJ; Barrett-Wilt GA; Hua Z; Vierstra RD
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16512-7. PubMed ID: 20813957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential.
    Saracco SA; Miller MJ; Kurepa J; Vierstra RD
    Plant Physiol; 2007 Sep; 145(1):119-34. PubMed ID: 17644626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis.
    Miller MJ; Scalf M; Rytz TC; Hubler SL; Smith LM; Vierstra RD
    Mol Cell Proteomics; 2013 Feb; 12(2):449-63. PubMed ID: 23197790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototropin Interactions with SUMO Proteins.
    Łabuz J; Sztatelman O; Jagiełło-Flasińska D; Hermanowicz P; Bażant A; Banaś AK; Bartnicki F; Giza A; Kozłowska A; Lasok H; Sitkiewicz E; Krzeszowiec W; Gabryś H; Strzałka W
    Plant Cell Physiol; 2021 Sep; 62(4):693-707. PubMed ID: 33594440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants.
    Muthuswamy S; Meier I
    Planta; 2011 Jan; 233(1):201-8. PubMed ID: 20872268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress.
    Rytz TC; Miller MJ; McLoughlin F; Augustine RC; Marshall RS; Juan YT; Charng YY; Scalf M; Smith LM; Vierstra RD
    Plant Cell; 2018 May; 30(5):1077-1099. PubMed ID: 29588388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes.
    Elrouby N; Coupland G
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17415-20. PubMed ID: 20855607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric identification of SUMO substrates provides insights into heat stress-induced SUMOylation in plants.
    Miller MJ; Vierstra RD
    Plant Signal Behav; 2011 Jan; 6(1):130-3. PubMed ID: 21270536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of the SUMOylation machinery in plants.
    Lois LM
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):60-4. PubMed ID: 20074036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis thaliana proliferating cell nuclear antigen has several potential sumoylation sites.
    Strzalka W; Labecki P; Bartnicki F; Aggarwal C; Rapala-Kozik M; Tani C; Tanaka K; Gabrys H
    J Exp Bot; 2012 May; 63(8):2971-83. PubMed ID: 22330895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.
    Matic I; Schimmel J; Hendriks IA; van Santen MA; van de Rijke F; van Dam H; Gnad F; Mann M; Vertegaal AC
    Mol Cell; 2010 Aug; 39(4):641-52. PubMed ID: 20797634
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Rytz TC; Feng J; Barros JAS; Vierstra RD
    Plant Direct; 2023 Jul; 7(7):e506. PubMed ID: 37465357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development.
    Kim SI; Park BS; Kim DY; Yeu SY; Song SI; Song JT; Seo HS
    Biochem J; 2015 Jul; 469(2):299-314. PubMed ID: 26008766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana.
    Castro PH; Verde N; Lourenço T; Magalhães AP; Tavares RM; Bejarano ER; Azevedo H
    Plant Cell Physiol; 2015 Dec; 56(12):2297-311. PubMed ID: 26468507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.
    Bursomanno S; Beli P; Khan AM; Minocherhomji S; Wagner SA; Bekker-Jensen S; Mailand N; Choudhary C; Hickson ID; Liu Y
    DNA Repair (Amst); 2015 Jan; 25():84-96. PubMed ID: 25497329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation.
    Castaño-Miquel L; Seguí J; Manrique S; Teixeira I; Carretero-Paulet L; Atencio F; Lois LM
    Mol Plant; 2013 Sep; 6(5):1646-60. PubMed ID: 23482370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.