These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39294853)
1. Targeting Design of Human Anti-idiotypic Genetically Engineered Antibody for Simulating the Structure and Insecticidal Function of Bt Cry1C Toxin. Xu C; Shen J; Chen W; Sun X; Zhang X; Liu Y; Liu X J Agric Food Chem; 2024 Oct; 72(39):21650-21666. PubMed ID: 39294853 [TBL] [Abstract][Full Text] [Related]
2. Synergism of Cry1 Toxins by a Fusion Protein Derived from a Cadherin Fragment and an Antibody Peptide. Gao M; Zhong J; Lu L; Li Y; Zhang Z J Agric Food Chem; 2024 Sep; 72(36):19689-19698. PubMed ID: 39189874 [TBL] [Abstract][Full Text] [Related]
3. Minimizing IP issues associated with gene constructs encoding the Bt toxin - a case study. Hassan MM; Tenazas F; Williams A; Chiu JW; Robin C; Russell DA; Golz JF BMC Biotechnol; 2024 Jun; 24(1):37. PubMed ID: 38825715 [TBL] [Abstract][Full Text] [Related]
4. [Targeted innovative design of Bt Cry toxin insecticidal mimics]. Xu C; Liu Y; Zhang X; Liu X Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):446-458. PubMed ID: 36847082 [TBL] [Abstract][Full Text] [Related]
5. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Song R; Peng D; Yu Z; Sun M Appl Microbiol Biotechnol; 2008 Sep; 80(4):647-54. PubMed ID: 18685842 [TBL] [Abstract][Full Text] [Related]
6. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Xie Y; Xu C; Gao M; Zhang X; Lu L; Hu X; Chen W; Jurat-Fuentes JL; Zhu Q; Liu Y; Lin M; Zhong J; Liu X Pest Manag Sci; 2021 Oct; 77(10):4593-4606. PubMed ID: 34092019 [TBL] [Abstract][Full Text] [Related]
7. Death-Associated LIM-Only Protein Reduces Cry1Ac Toxicity by Sequestration of Cry1Ac Protoxin and Activated Toxin in Duan Y; Yao X; Li P; Zhao Y; Zhang B; An S; Wei J; Li X J Agric Food Chem; 2024 Aug; 72(33):18708-18719. PubMed ID: 39106049 [TBL] [Abstract][Full Text] [Related]
8. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Cao J; Shelton AM; Earle ED Plant Cell Rep; 2008 Mar; 27(3):479-87. PubMed ID: 17989981 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Bacillus thuringiensis strain DOR4 toxic to castor semilooper Achaea janata: proteolytic processing and binding of toxins to receptors. Budatha M; Meur G; Vimala Devi PS; Kirti PB; Dutta-Gupta A Curr Microbiol; 2008 Jul; 57(1):72-7. PubMed ID: 18437459 [TBL] [Abstract][Full Text] [Related]
10. Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Jiao L; Liu Y; Zhang X; Liu B; Zhang C; Liu X Appl Microbiol Biotechnol; 2017 Aug; 101(15):6071-6082. PubMed ID: 28601895 [TBL] [Abstract][Full Text] [Related]
11. Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. Zhao JZ; Li YX; Collins HL; Cao J; Earle ED; Shelton AM J Econ Entomol; 2001 Dec; 94(6):1547-52. PubMed ID: 11777062 [TBL] [Abstract][Full Text] [Related]
12. Transgenic early japonica rice: Integration and expression characterization of stem borer resistance Bt gene. Hu Y; Tian C; Feng Y; Ma W; Zhang Y; Yang Q; Zhang X Gene; 2024 Nov; 927():148753. PubMed ID: 38972556 [TBL] [Abstract][Full Text] [Related]
13. Anti-idiotypic single-chain variable fragment antibody partially mimic the functionally spatial structure of Cry2Aa toxin. Lin M; Liu Y; Zhang X; Zhong J; Hu X; Xu C; Xie Y; Zhang C; Liang Y; Liu X; Lin J Anal Biochem; 2021 Jul; 625():114222. PubMed ID: 33932355 [TBL] [Abstract][Full Text] [Related]
14. Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries. Wang Y; Zhang X; Zhang C; Liu Y; Liu X Toxicon; 2012 Dec; 60(7):1290-7. PubMed ID: 22982116 [TBL] [Abstract][Full Text] [Related]
15. piggyBac-based transgenic Helicoverpa armigera expressing the T92C allele of the tetraspanin gene HaTSPAN1 confers dominant resistance to Bacillus thuringiensis toxin Cry1Ac. Li L; Pang X; Wang C; Yang Y; Wu Y Pestic Biochem Physiol; 2024 Sep; 204():106096. PubMed ID: 39277420 [TBL] [Abstract][Full Text] [Related]
16. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
17. Flexibility and strictness in functional replacement of domain III of cry insecticidal proteins from Bacillus thuringiensis. Sakai H; Howlader MT; Ishida Y; Nakaguchi A; Oka K; Ohbayashi K; Yamagiwa M; Hayakawa T J Biosci Bioeng; 2007 Apr; 103(4):381-3. PubMed ID: 17502282 [TBL] [Abstract][Full Text] [Related]
18. [Transfer of cry1C gene into Bacillus thuringiensis by electroporation to construct strain with broader insecticidal activity]. Lu SQ; Liu ZD; Yu ZN Sheng Wu Gong Cheng Xue Bao; 2000 Sep; 16(5):587-90. PubMed ID: 11191763 [TBL] [Abstract][Full Text] [Related]
19. Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against Bacillus thuringiensis Cry1F Toxin Single-Chain Antibodies. Xu C; Zhang C; Zhong J; Hu H; Luo S; Liu X; Zhang X; Liu Y; Liu X J Agric Food Chem; 2017 Jul; 65(29):6016-6022. PubMed ID: 28621534 [TBL] [Abstract][Full Text] [Related]
20. Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants. Dong S; Guan L; He K; Yang W; Deng W; Yuan S; Feng J Int J Biol Macromol; 2021 Jul; 183():1346-1351. PubMed ID: 34004200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]