These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39295022)

  • 1. Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales.
    Wójcik D; Macek WM
    Phys Rev E; 2024 Aug; 110(2-2):025203. PubMed ID: 39295022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing for Markovian character and modeling of intermittency in solar wind turbulence.
    Strumik M; Macek WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026414. PubMed ID: 18850953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft.
    Hnat B; Chapman SC; Rowlands G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056404. PubMed ID: 12786284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy partitioning constraints at kinetic scales in low-
    Gershman DJ; F-Viñas A; Dorelli JC; Goldstein ML; Shuster J; Avanov LA; Boardsen SA; Stawarz JE; Schwartz SJ; Schiff C; Lavraud B; Saito Y; Paterson WR; Giles BL; Pollock CJ; Strangeway RJ; Russell CT; Torbert RB; Moore TE; Burch JL
    Phys Plasmas; 2018; 25(2):. PubMed ID: 30344429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probability distributions of turbulent energy.
    Momeni M; Müller WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056401. PubMed ID: 18643170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markov process built in scale-similar multifractal energy cascades in turbulence.
    Hosokawa I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):027301. PubMed ID: 11863698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic properties of small-scale solar wind plasma fluctuations.
    Riazantseva MO; Budaev VP; Zelenyi LM; Zastenker GN; Pavlos GP; Safrankova J; Nemecek Z; Prech L; Nemec F
    Philos Trans A Math Phys Eng Sci; 2015 May; 373(2041):. PubMed ID: 25848078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monofractality in the Solar Wind at Electron Scales: Insights from Kinetic Alfvén Waves Turbulence.
    David V; Galtier S; Meyrand R
    Phys Rev Lett; 2024 Feb; 132(8):085201. PubMed ID: 38457708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data.
    Osman KT; Wan M; Matthaeus WH; Weygand JM; Dasso S
    Phys Rev Lett; 2011 Oct; 107(16):165001. PubMed ID: 22107393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of ion cyclotron damping of turbulence in Earth's magnetosheath plasma.
    Afshari AS; Howes GG; Shuster JR; Klein KG; McGinnis D; Martinović MM; Boardsen SA; Brown CR; Huang R; Hartley DP; Kletzing CA
    Nat Commun; 2024 Oct; 15(1):7870. PubMed ID: 39375361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Thermal Solar Wind Electron Velocity Distribution Function.
    Yoon PH; López RA; Salem CS; Bonnell JW; Kim S
    Entropy (Basel); 2024 Mar; 26(4):. PubMed ID: 38667863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dynamical model of plasma turbulence in the solar wind.
    Howes GG
    Philos Trans A Math Phys Eng Sci; 2015 May; 373(2041):. PubMed ID: 25848075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations.
    Carbone V; Marino R; Sorriso-Valvo L; Noullez A; Bruno R
    Phys Rev Lett; 2009 Aug; 103(6):061102. PubMed ID: 19792547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Cascade Rate Measured in a Collisionless Space Plasma with MMS Data and Compressible Hall Magnetohydrodynamic Turbulence Theory.
    Andrés N; Sahraoui F; Galtier S; Hadid LZ; Ferrand R; Huang SY
    Phys Rev Lett; 2019 Dec; 123(24):245101. PubMed ID: 31922873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.
    Weck PJ; Schaffner DA; Brown MR; Wicks RT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023101. PubMed ID: 25768612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining a new class of turbulent flows.
    Stresing R; Peinke J; Seoud RE; Vassilicos JC
    Phys Rev Lett; 2010 May; 104(19):194501. PubMed ID: 20866968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.
    Chapman SC; Nicol RM
    Phys Rev Lett; 2009 Dec; 103(24):241101. PubMed ID: 20366193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent nature of solar wind turbulence near the Earth's bow shock: phase coherence and non-Gaussianity.
    Koga D; Chian AC; Miranda RA; Rempel EL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046401. PubMed ID: 17500998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas.
    Nakamura TKM; Hasegawa H; Daughton W; Eriksson S; Li WY; Nakamura R
    Nat Commun; 2017 Nov; 8(1):1582. PubMed ID: 29150662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.