These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39295046)

  • 1. Performance at maximum figure of merit for a Brownian Carnot refrigerator.
    Contreras-Vergara O; Valencia-Ortega G; Sánchez-Salas N; Jiménez-Aquino JI
    Phys Rev E; 2024 Aug; 110(2-1):024123. PubMed ID: 39295046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coefficient of performance under maximum χ criterion in a two-level atomic system as a refrigerator.
    Yuan Y; Wang R; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052151. PubMed ID: 25493783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power.
    Contreras-Vergara O; Sánchez-Salas N; Valencia-Ortega G; Jiménez-Aquino JI
    Phys Rev E; 2023 Jul; 108(1-1):014123. PubMed ID: 37583186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of quantum Otto refrigerators with squeezing.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators.
    Wang Y; Li M; Tu ZC; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011127. PubMed ID: 23005388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation.
    Hu Y; Wu F; Ma Y; He J; Wang J; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062115. PubMed ID: 24483394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle.
    Chen YH; Chen JF; Fei Z; Quan HT
    Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency at maximum power of low-dissipation Carnot engines.
    Esposito M; Kawai R; Lindenberg K; Van den Broeck C
    Phys Rev Lett; 2010 Oct; 105(15):150603. PubMed ID: 21230882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal figure of merit of low-dissipation quantum refrigerators.
    Chen J; Wang Y; Chen J; Su S
    Phys Rev E; 2023 Apr; 107(4-1):044118. PubMed ID: 37198854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry.
    Benenti G; Saito K; Casati G
    Phys Rev Lett; 2011 Jun; 106(23):230602. PubMed ID: 21770492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian Carnot engine.
    Martínez IA; Roldán É; Dinis L; Petrov D; Parrondo JMR; Rica RA
    Nat Phys; 2016 Jan; 12(1):67-70. PubMed ID: 27330541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal refrigerator.
    Allahverdyan AE; Hovhannisyan K; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051129. PubMed ID: 20866207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum analysis of a Brownian refrigerator.
    Luo XG; Liu N; He JZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022139. PubMed ID: 23496491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance bound for quantum absorption refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal finite-time Brownian Carnot engine.
    Frim AG; DeWeese MR
    Phys Rev E; 2022 May; 105(5):L052103. PubMed ID: 35706186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.
    Wang J; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051112. PubMed ID: 23214743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z; Holubec V
    Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.