These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39295050)

  • 1. Universal superdiffusion of random walks in media with embedded fractal networks of low diffusivity.
    Reis FDAA; Voller VR
    Phys Rev E; 2024 Aug; 110(2):L022102. PubMed ID: 39295050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous diffusion in a quenched-trap model on fractal lattices.
    Miyaguchi T; Akimoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):010102. PubMed ID: 25679550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling relations in the diffusive infiltration in fractals.
    Aarão Reis FD
    Phys Rev E; 2016 Nov; 94(5-1):052124. PubMed ID: 27967172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random walk through fractal environments.
    Isliker H; Vlahos L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026413. PubMed ID: 12636828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractal dimension of critical curves in the O(n)-symmetric ϕ^{4} model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models.
    Kompaniets M; Wiese KJ
    Phys Rev E; 2020 Jan; 101(1-1):012104. PubMed ID: 32069567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop-erased random walk on a percolation cluster: crossover from Euclidean to fractal geometry.
    Daryaei E; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062101. PubMed ID: 25019719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of infiltration into homogeneous and fractal porous media with localized sources.
    Reis FDAA; Voller VR
    Phys Rev E; 2019 Apr; 99(4-1):042111. PubMed ID: 31108678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling exponents for a monkey on a tree: fractal dimensions of randomly branched polymers.
    Janssen HK; Stenull O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051126. PubMed ID: 23004722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous diffusion processes and nonergodicity with Gaussian colored noise in layered diffusivity landscapes.
    Xu Y; Liu X; Li Y; Metzler R
    Phys Rev E; 2020 Dec; 102(6-1):062106. PubMed ID: 33466052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time increasing rates of infiltration and reaction in porous media at the percolation thresholds.
    Carrasco ISS; Reis FDAA
    Phys Rev E; 2021 Feb; 103(2-1):022138. PubMed ID: 33736020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous diffusion on a fractal mesh.
    Sandev T; Iomin A; Kantz H
    Phys Rev E; 2017 May; 95(5-1):052107. PubMed ID: 28618503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling of Hamiltonian walks on fractal lattices.
    Elezović-Hadzić S; Marcetić D; Maletić S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011107. PubMed ID: 17677410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aftermath epidemics: Percolation on the sites visited by generalized random walks.
    Feshanjerdi M; Masoudi AA; Grassberger P; Ebrahimi M
    Phys Rev E; 2023 Aug; 108(2-1):024312. PubMed ID: 37723758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective degrees of freedom of a random walk on a fractal.
    Balankin AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062146. PubMed ID: 26764671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blind and myopic ants in heterogeneous networks.
    Hwang S; Lee DS; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052814. PubMed ID: 25493841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and diffusion of overdamped Brownian particles in random potentials.
    Simon MS; Sancho JM; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062105. PubMed ID: 24483384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice statistical theory of random walks on a fractal-like geometry.
    Kozak JJ; Garza-López RA; Abad E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032147. PubMed ID: 24730829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic growth tree networks with an identical fractal dimension: Construction and mean hitting time for random walks.
    Ma F; Luo X; Wang P
    Chaos; 2022 Jun; 32(6):063123. PubMed ID: 35778122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.