These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 39295920)
1. A new sponge from the Marjum Formation of Utah documents the Cambrian origin of the hexactinellid body plan. Del Mouro L; Lerosey-Aubril R; Botting J; Coleman R; Gaines RR; Skabelund J; Weaver JC; Ortega-Hernández J R Soc Open Sci; 2024 Sep; 11(9):231845. PubMed ID: 39295920 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution. Nadhira A; Sutton MD; Botting JP; Muir LA; Gueriau P; King A; Briggs DEG; Siveter DJ; Siveter DJ R Soc Open Sci; 2019 Jul; 6(7):190911. PubMed ID: 31417767 [TBL] [Abstract][Full Text] [Related]
3. Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution. Botting JP; Zhang Y; Muir LA Sci Rep; 2017 Jul; 7(1):5286. PubMed ID: 28706211 [TBL] [Abstract][Full Text] [Related]
4. The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian). Pates S; Lerosey-Aubril R; Daley AC; Kier C; Bonino E; Ortega-Hernández J PeerJ; 2021; 9():e10509. PubMed ID: 33552709 [TBL] [Abstract][Full Text] [Related]
6. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Riesgo A; Farrar N; Windsor PJ; Giribet G; Leys SP Mol Biol Evol; 2014 May; 31(5):1102-20. PubMed ID: 24497032 [TBL] [Abstract][Full Text] [Related]
7. A late-Ediacaran crown-group sponge animal. Wang X; Liu AG; Chen Z; Wu C; Liu Y; Wan B; Pang K; Zhou C; Yuan X; Xiao S Nature; 2024 Jun; 630(8018):905-911. PubMed ID: 38839967 [TBL] [Abstract][Full Text] [Related]
8. Adaptive specialization of a unique sponge body from the Cambrian Qingjiang biota. Yun H; Luo C; Chang C; Li L; Reitner J; Zhang X Proc Biol Sci; 2022 Jun; 289(1976):20220804. PubMed ID: 35703053 [TBL] [Abstract][Full Text] [Related]
9. A long-headed Cambrian soft-bodied vertebrate from the American Great Basin region. Lerosey-Aubril R; Ortega-Hernández J R Soc Open Sci; 2024 Jul; 11(7):240350. PubMed ID: 39050723 [TBL] [Abstract][Full Text] [Related]
10. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Botting JP; Butterfield NJ Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1554-9. PubMed ID: 15665105 [TBL] [Abstract][Full Text] [Related]
11. The unique invention of the siliceous sponges: their enzymatically made bio-silica skeleton. Müller WE; Wang X; Chen A; Hu S; Gan L; Schröder HC; Schloßmacher U; Wiens M Prog Mol Subcell Biol; 2011; 52():251-81. PubMed ID: 21877269 [TBL] [Abstract][Full Text] [Related]
12. Giving the early fossil record of sponges a squeeze. Antcliffe JB; Callow RH; Brasier MD Biol Rev Camb Philos Soc; 2014 Nov; 89(4):972-1004. PubMed ID: 24779547 [TBL] [Abstract][Full Text] [Related]
13. The largest Bio-Silica Structure on Earth: The Giant Basal Spicule from the Deep-Sea Glass Sponge Monorhaphis chuni. Wang X; Gan L; Jochum KP; Schröder HC; Müller WE Evid Based Complement Alternat Med; 2011; 2011():540987. PubMed ID: 21941585 [TBL] [Abstract][Full Text] [Related]
14. Middle and Late Cambrian sponge spicules from Hunan, China. Xiping D; Knoll AH J Paleontol; 1996 Mar; 70(2):173-84. PubMed ID: 11539394 [TBL] [Abstract][Full Text] [Related]
15. Naked chancelloriids from the lower Cambrian of China show evidence for sponge-type growth. Cong PY; Harvey THP; Williams M; Siveter DJ; Siveter DJ; Gabbott SE; Li YJ; Wei F; Hou XG Proc Biol Sci; 2018 Jun; 285(1881):. PubMed ID: 29925613 [TBL] [Abstract][Full Text] [Related]
16. A new hexactinellid-sponge-associated zoantharian (Porifera, Hexasterophora) from the northwestern Pacific Ocean. Kise H; Nishijima M; Iguchi A; Minatoya J; Yokooka H; Ise Y; Suzuki A Zookeys; 2023; 1156():71-85. PubMed ID: 37234793 [TBL] [Abstract][Full Text] [Related]
17. An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida). Dohrmann M; Kelley C; Kelly M; Pisera A; Hooper JNA; Reiswig HM Front Zool; 2017; 14():18. PubMed ID: 28331531 [TBL] [Abstract][Full Text] [Related]
18. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. Wang X; Schröder HC; Müller WE Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903 [TBL] [Abstract][Full Text] [Related]
19. A chemical view of the most ancient metazoa--biomarker chemotaxonomy of hexactinellid sponges. Thiel V; Blumenberg M; Hefter J; Pape T; Pomponi S; Reed J; Reitner J; Wörheide G; Michaelis W Naturwissenschaften; 2002 Feb; 89(2):60-6. PubMed ID: 12046622 [TBL] [Abstract][Full Text] [Related]
20. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]