These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39296185)

  • 1. MobileNet-V2 /IFHO model for Accurate Detection of early-stage diabetic retinopathy.
    Huang C; Sarabi M; Ragab AE
    Heliyon; 2024 Sep; 10(17):e37293. PubMed ID: 39296185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid neural network approach for classifying diabetic retinopathy subtypes.
    Xu H; Shao X; Fang D; Huang F
    Front Med (Lausanne); 2023; 10():1293019. PubMed ID: 38239623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization.
    Kumar Lilhore U; Simaiya S; Sharma YK; Kaswan KS; Rao KBVB; Rao VVRM; Baliyan A; Bijalwan A; Alroobaea R
    Sci Rep; 2024 Feb; 14(1):4299. PubMed ID: 38383520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning.
    Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y
    Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HDR-EfficientNet: A Classification of Hypertensive and Diabetic Retinopathy Using Optimize EfficientNet Architecture.
    Abbas Q; Daadaa Y; Rashid U; Sajid MZ; Ibrahim MEA
    Diagnostics (Basel); 2023 Oct; 13(20):. PubMed ID: 37892058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet.
    Vijayan M; S V
    Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique.
    Wahab Sait AR
    Diagnostics (Basel); 2023 Oct; 13(19):. PubMed ID: 37835861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIMEQ-SACNet: A novel self-attention precision medicine model for vision-threatening diabetic retinopathy using image data.
    Bilal A; Liu X; Shafiq M; Ahmed Z; Long H
    Comput Biol Med; 2024 Mar; 171():108099. PubMed ID: 38364659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model.
    Shoaib MR; Emara HM; Zhao J; El-Shafai W; Soliman NF; Mubarak AS; Omer OA; El-Samie FEA; Esmaiel H
    Comput Biol Med; 2024 Feb; 169():107834. PubMed ID: 38159396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lightweight and multi-lesion segmentation model for diabetic retinopathy based on the fusion of mixed attention and ghost feature mapping.
    Gao W; Fan B; Fang Y; Song N
    Comput Biol Med; 2024 Feb; 169():107854. PubMed ID: 38109836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification.
    Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723
    [No Abstract]   [Full Text] [Related]  

  • 13. Deep feed forward neural network-based screening system for diabetic retinopathy severity classification using the lion optimization algorithm.
    Vasireddi HK; K SD; G N V RR
    Graefes Arch Clin Exp Ophthalmol; 2022 Apr; 260(4):1245-1263. PubMed ID: 34505925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images.
    Riazi Esfahani P; Reddy AJ; Nawathey N; Ghauri MS; Min M; Wagh H; Tak N; Patel R
    Cureus; 2023 Jul; 15(7):e41615. PubMed ID: 37565126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison review of image classification techniques for early diagnosis of diabetic retinopathy.
    Wangweera C; Zanini P
    Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39173657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Technique for Diabetic Retinopathy Detection Based on Ensemble-Optimized CNN and Texture Features.
    Ishtiaq U; Abdullah ERMF; Ishtiaque Z
    Diagnostics (Basel); 2023 May; 13(10):. PubMed ID: 37238304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images.
    Kobat SG; Baygin N; Yusufoglu E; Baygin M; Barua PD; Dogan S; Yaman O; Celiker U; Yildirim H; Tan RS; Tuncer T; Islam N; Acharya UR
    Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep long and short term memory based Red Fox optimization algorithm for diabetic retinopathy detection and classification.
    Pugal Priya R; Saradadevi Sivarani T; Gnana Saravanan A
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3560. PubMed ID: 34865312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture.
    Sajid MZ; Qureshi I; Abbas Q; Albathan M; Shaheed K; Youssef A; Ferdous S; Hussain A
    Diagnostics (Basel); 2023 Apr; 13(8):. PubMed ID: 37189539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based hemorrhage detection for diabetic retinopathy screening.
    Aziz T; Charoenlarpnopparut C; Mahapakulchai S
    Sci Rep; 2023 Jan; 13(1):1479. PubMed ID: 36707608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.