These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 392962)
1. [Localization of the degradation of injected maltose]. Schwartz HH; Reinauer H Z Ernahrungswiss; 1979 Sep; 18(3):149-59. PubMed ID: 392962 [TBL] [Abstract][Full Text] [Related]
2. Loads, capacities and safety factors of maltase and the glucose transporter SGLT1 in mouse intestinal brush border. Lam MM; O'Connor TP; Diamond J J Physiol; 2002 Jul; 542(Pt 2):493-500. PubMed ID: 12122147 [TBL] [Abstract][Full Text] [Related]
3. Distribution of maltose intravenously administered to rabbits and its metabolism in the kidney. Oneda A; Yamagata S; Tsutsumi K; Fujiwara H Tohoku J Exp Med; 1974 Feb; 112(2):141-54. PubMed ID: 4836026 [No Abstract] [Full Text] [Related]
4. Soluble neutral and acid maltases in the suckling-rat intestine. The effect of cortisol and development. Galand G; Forstner GG Biochem J; 1974 Nov; 144(2):281-92. PubMed ID: 4218959 [TBL] [Abstract][Full Text] [Related]
5. Disaccharide absorption by amphibian small intestine in vitro. Parsons DS; Prichard JS J Physiol; 1968 Nov; 199(1):137-50. PubMed ID: 5684031 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of circulating disaccharides in man and the rat. Weser E; Sleisenger MH J Clin Invest; 1967 Apr; 46(4):499-505. PubMed ID: 6021203 [TBL] [Abstract][Full Text] [Related]
7. Comparisons of maltase activities in kidney brush border membranes from normal, diabetic, glucose-infused and maltose-infused rabbits. Itoh K; Shiraishi T; Taniguchi K; Hara T; Morimoto S; Onishi T; Ogihara T Biochem Int; 1989 Jun; 18(6):1137-47. PubMed ID: 2665745 [TBL] [Abstract][Full Text] [Related]
8. Kinetic studies on the substrate specificity and active site of rabbit muscle acid alpha-glucosidase. Matsui H; Sasaki M; Takemasa E; Kaneta T; Chiba S J Biochem; 1984 Oct; 96(4):993-1004. PubMed ID: 6394601 [TBL] [Abstract][Full Text] [Related]
9. [The influence of protein starvation on hydrolytic and transport characteristics of the rat small intestine in chronic experiments]. Gromova LV Ross Fiziol Zh Im I M Sechenova; 2006 Oct; 92(10):1239-49. PubMed ID: 17216721 [TBL] [Abstract][Full Text] [Related]
10. Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis. ter Kuile BH; Müller M Parasitology; 1995 Jan; 110 ( Pt 1)():37-44. PubMed ID: 7845710 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization of alpha-glucosidases produced by Saccharomyces in response to three distinct maltose genes. Tabata S; Ide T; Umemura Y; Torii K Biochim Biophys Acta; 1984 Feb; 797(2):231-8. PubMed ID: 6421330 [TBL] [Abstract][Full Text] [Related]
12. New approach to the metabolism of hydrogenated starch hydrolysate: hydrolysis by the maltase/glucoamylase complex of the rat intestinal mucosa. Rosiers C; Verwaerde F; Dupas H; Bouquelet S Ann Nutr Metab; 1985; 29(2):76-82. PubMed ID: 3922278 [TBL] [Abstract][Full Text] [Related]
13. Kinetic studies on glucoamylase of rabbit small intestine. Sivakami S; Radhakrishnan AN Biochem J; 1976 Feb; 153(2):321-7. PubMed ID: 6006 [TBL] [Abstract][Full Text] [Related]
14. Brush border disaccharidases in dog kidney and their spatial relationship to glucose transport receptors. Silverman M J Clin Invest; 1973 Oct; 52(10):2486-94. PubMed ID: 4729044 [TBL] [Abstract][Full Text] [Related]
15. The maltase, glucoamylase and transglucosylase activities of acid -glucosidase from rabbit muscle. Palmer TN Biochem J; 1971 Oct; 124(4):713-24. PubMed ID: 5289198 [TBL] [Abstract][Full Text] [Related]
16. [The effect of galactose on absorption of free glucose and glucose, liberated during hydrolysis of maltose and trehalose in the small intestine]. Gromova LV; Takesue E; Ugolev AM Dokl Akad Nauk SSSR; 1992; 322(3):607-9. PubMed ID: 1591976 [No Abstract] [Full Text] [Related]
17. P-Nitrophenol-alpha-D-glucopyranoside as substrate for measurement of maltase activity in human semen. Chapdelaine P; Tremblay RR; Dubé JY Clin Chem; 1978 Feb; 24(2):208-11. PubMed ID: 23909 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic formation of a nonreducing L-ascorbic acid alpha-glucoside: purification and properties of alpha-glucosidases catalyzing site-specific transglucosylation from rat small intestine. Muto N; Nakamura T; Yamamoto I J Biochem; 1990 Feb; 107(2):222-7. PubMed ID: 2141837 [TBL] [Abstract][Full Text] [Related]
19. Genetic control of maltase formation in yeast. III. Isolation and characterization of temperature-sensitive mutants affecting maltase induction and maltose utilization. Khan NA Mol Gen Genet; 1975; 136(1):55-61. PubMed ID: 16094966 [TBL] [Abstract][Full Text] [Related]
20. Physiological characterization and fed-batch production of an extracellular maltase of Schizosaccharomyces pombe CBS 356. Jansen ML; Krook DJ; De Graaf K; van Dijken JP; Pronk JT; de Winde JH FEMS Yeast Res; 2006 Sep; 6(6):888-901. PubMed ID: 16911511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]