These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39297384)
1. Thermodynamic quantum Fokker-Planck equations and their application to thermostatic Stirling engine. Koyanagi S; Tanimura Y J Chem Phys; 2024 Sep; 161(11):. PubMed ID: 39297384 [TBL] [Abstract][Full Text] [Related]
2. Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine. Koyanagi S; Tanimura Y J Chem Phys; 2024 Sep; 161(11):. PubMed ID: 39297383 [TBL] [Abstract][Full Text] [Related]
3. Classical and quantum thermodynamics described as a system-bath model: The dimensionless minimum work principle. Koyanagi S; Tanimura Y J Chem Phys; 2024 Jun; 160(23):. PubMed ID: 38904216 [TBL] [Abstract][Full Text] [Related]
4. Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams. Koyanagi S; Tanimura Y J Chem Phys; 2022 Aug; 157(8):084110. PubMed ID: 36050026 [TBL] [Abstract][Full Text] [Related]
5. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. Li T; Yan Y; Shi Q J Chem Phys; 2022 Feb; 156(6):064107. PubMed ID: 35168335 [TBL] [Abstract][Full Text] [Related]
6. Low-Temperature Quantum Fokker-Planck and Smoluchowski Equations and Their Extension to Multistate Systems. Ikeda T; Tanimura Y J Chem Theory Comput; 2019 Apr; 15(4):2517-2534. PubMed ID: 30776312 [TBL] [Abstract][Full Text] [Related]
7. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
9. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. Kato A; Tanimura Y J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915 [TBL] [Abstract][Full Text] [Related]
10. Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics. Ding JJ; Wang Y; Zhang HD; Xu RX; Zheng X; Yan Y J Chem Phys; 2017 Jan; 146(2):024104. PubMed ID: 28088143 [TBL] [Abstract][Full Text] [Related]
11. Non-Markovian theory of open systems in classical limit. Neufeld AA J Chem Phys; 2004 Aug; 121(6):2542-52. PubMed ID: 15281851 [TBL] [Abstract][Full Text] [Related]
12. Extraction of work from a single thermal bath in the quantum regime. Allahverdyan AE; Nieuwenhuizen TM Phys Rev Lett; 2000 Aug; 85(9):1799-802. PubMed ID: 10970617 [TBL] [Abstract][Full Text] [Related]
13. Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker-Planck equation approach. Ikeda T; Tanimura Y J Chem Phys; 2017 Jul; 147(1):014102. PubMed ID: 28688401 [TBL] [Abstract][Full Text] [Related]
14. The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach. Koyanagi S; Tanimura Y J Chem Phys; 2022 Jul; 157(1):014104. PubMed ID: 35803810 [TBL] [Abstract][Full Text] [Related]
16. Classical limit of master equation for a harmonic oscillator coupled to an oscillator bath with separable initial conditions. Banerjee S; Dhar A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):067104. PubMed ID: 16907031 [TBL] [Abstract][Full Text] [Related]
17. Nonequilibrium entropic temperature and its lower bound for quantum stochastic processes. Ray S; Baura A; Bag BC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032148. PubMed ID: 24730830 [TBL] [Abstract][Full Text] [Related]
18. Numerically "exact" simulations of entropy production in the fully quantum regime: Boltzmann entropy vs von Neumann entropy. Sakamoto S; Tanimura Y J Chem Phys; 2020 Dec; 153(23):234107. PubMed ID: 33353341 [TBL] [Abstract][Full Text] [Related]