These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3929771)

  • 21. Disappearance of thymine photodimer in ultraviolet irradiated DNA upon treatment with a photoreactivating enzyme from baker's yeast.
    WULFF DL; RUPERT CS
    Biochem Biophys Res Commun; 1962 Apr; 7():237-40. PubMed ID: 14008553
    [No Abstract]   [Full Text] [Related]  

  • 22. Ultraviolet light induced linking of deoxyribonucleic acid strands and its reversal by photoreactivating enzyme.
    MARMUR J; GROSSMAN L
    Proc Natl Acad Sci U S A; 1961 Jun; 47(6):778-87. PubMed ID: 13767019
    [No Abstract]   [Full Text] [Related]  

  • 23. Substrate activation and substrate inhibition of trypsin-like enzymes from three strains of Streptomyces species.
    Nakata H; Yoshida N; Narahashi Y; Ishii S
    J Biochem; 1972 Jun; 71(6):1085-8. PubMed ID: 4627499
    [No Abstract]   [Full Text] [Related]  

  • 24. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of the reconstituted mitochondrial oxoglutarate carrier by arginine-specific reagents.
    Stipani I; Mangiullo G; Stipani V; Daddabbo L; Natuzzi D; Palmieri F
    Arch Biochem Biophys; 1996 Jul; 331(1):48-54. PubMed ID: 8660682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the number of photoreactivating enzyme molecules per haploid Saccharomyces cells.
    Yasui A; Laskowski W
    Int J Radiat Biol Relat Stud Phys Chem Med; 1975 Dec; 28(6):511-8. PubMed ID: 1082862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the S1 binding site of the glutamic acid-specific protease from Streptomyces griseus.
    Stennicke HR; Birktoft JJ; Breddam K
    Protein Sci; 1996 Nov; 5(11):2266-75. PubMed ID: 8931145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Action spectra for photoreactivation of ultraviolet-irradiated Escherichia coli and Streptomyces griseus.
    KELNER A
    J Gen Physiol; 1951 Jul; 34(6):835-52. PubMed ID: 14850704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of the apoprotein of 40 kDa photoreactivating enzyme from Escherichia coli with deoxyribonucleic acid.
    Hejmadi VS; Verma NC
    Indian J Biochem Biophys; 1987 Aug; 24(4):189-93. PubMed ID: 3325404
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanisms of caffeine inhibition of DNA repair in E. coli.
    Selby CP; Sancar A
    Prog Clin Biol Res; 1990; 340A():179-93. PubMed ID: 2201972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of aspartyl proteinases by butane-2,3-dione. Modification of tryptophan and tyrosine residues and evidence against reaction of arginine residues.
    Gripon JC; Hofmann T
    Biochem J; 1981 Jan; 193(1):55-65. PubMed ID: 6796042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate.
    Hemmilä IA; Mäntsälä PI
    Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of Glu196 in the environment around the substrate binding site of leucine aminopeptidase from Streptomyces griseus.
    Arima J; Uesugi Y; Uraji M; Iwabuchi M; Hatanaka T
    FEBS Lett; 2006 Feb; 580(3):912-7. PubMed ID: 16427629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Metabolism of guanidine derivatives. VI. Degradation of guanidine derivatives in Streptomyces griseus (Waksman)].
    HATT JL; ROCHE J; THOAI NV; TRAN THI AN
    Biochim Biophys Acta; 1956 Nov; 22(2):337-41. PubMed ID: 13382852
    [No Abstract]   [Full Text] [Related]  

  • 35. Identification of the catalytic residues in the double-zinc aminopeptidase from Streptomyces griseus.
    Fundoiano-Hershcovitz Y; Rabinovitch L; Langut Y; Reiland V; Shoham G; Shoham Y
    FEBS Lett; 2004 Jul; 571(1-3):192-6. PubMed ID: 15280041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting α- and β-chitin.
    Nakagawa YS; Kudo M; Loose JS; Ishikawa T; Totani K; Eijsink VG; Vaaje-Kolstad G
    FEBS J; 2015 Mar; 282(6):1065-79. PubMed ID: 25605134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Properties of immobilized complexes of Streptomyces griseus proteases on different carriers].
    Loseva AL; Verbilenko SV
    Ukr Biokhim Zh (1978); 1979; 51(4):345-9. PubMed ID: 38547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of electrospray mass spectrometry to identify an essential arginine residue in type II dehydroquinases.
    Krell T; Pitt AR; Coggins JR
    FEBS Lett; 1995 Feb; 360(1):93-6. PubMed ID: 7875309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variants of Streptomyces griseus induced by ultraviolet radiations.
    PITTENGER RC; MCCOY E
    J Bacteriol; 1953 Jan; 65(1):56-64. PubMed ID: 13022630
    [No Abstract]   [Full Text] [Related]  

  • 40. Evidence for the presence of an essential arginine residue in photoreactivating enzyme from Streptomyces griseus.
    Eker AP
    Biochem J; 1985 Jul; 229(2):469-76. PubMed ID: 3929771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.