These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 39299268)

  • 1. Determinant- and Derivative-Free Quantum Monte Carlo Within the Stochastic Representation of Wavefunctions.
    Bernheimer L; Atanasova H; Cohen G
    Rep Prog Phys; 2024 Sep; ():. PubMed ID: 39299268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic representation of many-body quantum states.
    Atanasova H; Bernheimer L; Cohen G
    Nat Commun; 2023 Jun; 14(1):3601. PubMed ID: 37328458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Fermi-Liquid Instabilities in Sign Problem-Free Models.
    Grossman O; Berg E
    Phys Rev Lett; 2023 Aug; 131(5):056501. PubMed ID: 37595239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization method.
    Sasaki A; Kojo M; Hirose K; Goto H
    J Phys Condens Matter; 2011 Nov; 23(43):434001. PubMed ID: 21998159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully Quantum Description of the Zundel Ion: Combining Variational Quantum Monte Carlo with Path Integral Langevin Dynamics.
    Mouhat F; Sorella S; Vuilleumier R; Saitta AM; Casula M
    J Chem Theory Comput; 2017 Jun; 13(6):2400-2417. PubMed ID: 28441484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A variational principle in Wigner phase-space with applications to statistical mechanics.
    Poulsen JA
    J Chem Phys; 2011 Jan; 134(3):034118. PubMed ID: 21261341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-neural-network solution of the electronic Schrödinger equation.
    Hermann J; Schätzle Z; Noé F
    Nat Chem; 2020 Oct; 12(10):891-897. PubMed ID: 32968231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unbiasing fermionic quantum Monte Carlo with a quantum computer.
    Huggins WJ; O'Gorman BA; Rubin NC; Reichman DR; Babbush R; Lee J
    Nature; 2022 Mar; 603(7901):416-420. PubMed ID: 35296841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines.
    Pilati S; Inack EM; Pieri P
    Phys Rev E; 2019 Oct; 100(4-1):043301. PubMed ID: 31770982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermionic physics from ab initio path integral Monte Carlo simulations of fictitious identical particles.
    Dornheim T; Tolias P; Groth S; Moldabekov ZA; Vorberger J; Hirshberg B
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37888764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuum variational and diffusion quantum Monte Carlo calculations.
    Needs RJ; Towler MD; Drummond ND; López Ríos P
    J Phys Condens Matter; 2010 Jan; 22(2):023201. PubMed ID: 21386247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic nodal surfaces in quantum Monte Carlo calculations.
    Hutcheon M
    Phys Rev E; 2020 Oct; 102(4-1):042105. PubMed ID: 33212637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in quantum Monte Carlo simulations with applications for cold gases.
    Pollet L
    Rep Prog Phys; 2012 Sep; 75(9):094501. PubMed ID: 22885729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path integral molecular dynamics for fermions: Alleviating the sign problem with the Bogoliubov inequality.
    Hirshberg B; Invernizzi M; Parrinello M
    J Chem Phys; 2020 May; 152(17):171102. PubMed ID: 32384858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-space path-integral representation of the quantum density of states: Monte Carlo simulation of strongly correlated soft-sphere fermions.
    Filinov VS; Levashov PR; Larkin AS
    Phys Rev E; 2024 Feb; 109(2-1):024137. PubMed ID: 38491615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving fermion problems without solving the sign problem: Symmetry-breaking wave functions from similarity-transformed propagators for solving two-dimensional quantum dots.
    Chin SA
    Phys Rev E; 2020 Apr; 101(4-1):043304. PubMed ID: 32422780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaussian process based optimization of molecular geometries using statistically sampled energy surfaces from quantum Monte Carlo.
    Archibald R; Krogel JT; Kent PRC
    J Chem Phys; 2018 Oct; 149(16):164116. PubMed ID: 30384760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Improved Penalty-Based Excited-State Variational Monte Carlo Approach with Deep-Learning Ansatzes.
    Szabó PB; Schätzle Z; Entwistle MT; Noé F
    J Chem Theory Comput; 2024 Aug; 20(18):7922-35. PubMed ID: 39213603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-order path-integral Monte Carlo methods for solving quantum dot problems.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031301. PubMed ID: 25871047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.