These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Weakly supervised segmentation on neural compressed histopathology with self-equivariant regularization. Chikontwe P; Jung Sung H; Jeong J; Kim M; Go H; Jeong Nam S; Hyun Park S Med Image Anal; 2022 Aug; 80():102482. PubMed ID: 35688048 [TBL] [Abstract][Full Text] [Related]
4. A Cross-Domain Weakly Supervised Diabetic Retinopathy Lesion Identification Method Based on Multiple Instance Learning and Domain Adaptation. Li R; Gu Y; Wang X; Pan J Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760202 [TBL] [Abstract][Full Text] [Related]
5. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
6. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis. Cao P; Ren F; Wan C; Yang J; Zaiane O Comput Med Imaging Graph; 2018 Nov; 69():112-124. PubMed ID: 30237145 [TBL] [Abstract][Full Text] [Related]
7. Deep semi-supervised multiple instance learning with self-correction for DME classification from OCT images. Wang X; Tang F; Chen H; Cheung CY; Heng PA Med Image Anal; 2023 Jan; 83():102673. PubMed ID: 36403310 [TBL] [Abstract][Full Text] [Related]
8. Collaborative learning of weakly-supervised domain adaptation for diabetic retinopathy grading on retinal images. Cao P; Hou Q; Song R; Wang H; Zaiane O Comput Biol Med; 2022 May; 144():105341. PubMed ID: 35279423 [TBL] [Abstract][Full Text] [Related]
10. Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models. Pavithra S; Jaladi D; Tamilarasi K Photodiagnosis Photodyn Ther; 2024 Aug; 48():104259. PubMed ID: 38944405 [TBL] [Abstract][Full Text] [Related]
11. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
12. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images. Li F; Tang S; Chen Y; Zou H Biomed Opt Express; 2022 Nov; 13(11):5813-5835. PubMed ID: 36733744 [TBL] [Abstract][Full Text] [Related]
13. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification. Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132 [TBL] [Abstract][Full Text] [Related]
14. Contrastive self-supervised learning for diabetic retinopathy early detection. Ouyang J; Mao D; Guo Z; Liu S; Xu D; Wang W Med Biol Eng Comput; 2023 Sep; 61(9):2441-2452. PubMed ID: 37119374 [TBL] [Abstract][Full Text] [Related]
15. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
16. Multi-scale multi-attention network for diabetic retinopathy grading. Xia H; Long J; Song S; Tan Y Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368 [No Abstract] [Full Text] [Related]
17. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]