These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39299958)

  • 1. A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification.
    Fan J; Yang T; Wang H; Zhang H; Zhang W; Ji M; Miao J
    J Imaging Inform Med; 2024 Sep; ():. PubMed ID: 39299958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Supervised Equivariant Regularization Reconciles Multiple Instance Learning: Joint Referable Diabetic Retinopathy Classification and Lesion Segmentation.
    Zhu W; Qiu P; Lepore N; Dumitrascu OM; Wang Y
    Proc SPIE Int Soc Opt Eng; 2022 Nov; 12567():. PubMed ID: 37026019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakly supervised segmentation on neural compressed histopathology with self-equivariant regularization.
    Chikontwe P; Jung Sung H; Jeong J; Kim M; Go H; Jeong Nam S; Hyun Park S
    Med Image Anal; 2022 Aug; 80():102482. PubMed ID: 35688048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cross-Domain Weakly Supervised Diabetic Retinopathy Lesion Identification Method Based on Multiple Instance Learning and Domain Adaptation.
    Li R; Gu Y; Wang X; Pan J
    Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning.
    Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y
    Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis.
    Cao P; Ren F; Wan C; Yang J; Zaiane O
    Comput Med Imaging Graph; 2018 Nov; 69():112-124. PubMed ID: 30237145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep semi-supervised multiple instance learning with self-correction for DME classification from OCT images.
    Wang X; Tang F; Chen H; Cheung CY; Heng PA
    Med Image Anal; 2023 Jan; 83():102673. PubMed ID: 36403310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collaborative learning of weakly-supervised domain adaptation for diabetic retinopathy grading on retinal images.
    Cao P; Hou Q; Song R; Wang H; Zaiane O
    Comput Biol Med; 2022 May; 144():105341. PubMed ID: 35279423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation.
    Ullah Z; Usman M; Latif S; Khan A; Gwak J
    Sci Rep; 2023 Jun; 13(1):9087. PubMed ID: 37277554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models.
    Pavithra S; Jaladi D; Tamilarasi K
    Photodiagnosis Photodyn Ther; 2024 Aug; 48():104259. PubMed ID: 38944405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images.
    Li F; Tang S; Chen Y; Zou H
    Biomed Opt Express; 2022 Nov; 13(11):5813-5835. PubMed ID: 36733744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification.
    Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrastive self-supervised learning for diabetic retinopathy early detection.
    Ouyang J; Mao D; Guo Z; Liu S; Xu D; Wang W
    Med Biol Eng Comput; 2023 Sep; 61(9):2441-2452. PubMed ID: 37119374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images.
    Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M
    Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale multi-attention network for diabetic retinopathy grading.
    Xia H; Long J; Song S; Tan Y
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368
    [No Abstract]   [Full Text] [Related]  

  • 17. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models.
    Alam MN; Yamashita R; Ramesh V; Prabhune T; Lim JI; Chan RVP; Hallak J; Leng T; Rubin D
    Sci Rep; 2023 Apr; 13(1):6047. PubMed ID: 37055475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC).
    Das D; Biswas SK; Bandyopadhyay S
    Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading.
    Li H; Dong X; Shen W; Ge F; Li H
    Comput Biol Med; 2022 Oct; 149():105970. PubMed ID: 36058067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.