These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 3930039)

  • 1. Regulation of bone mass by mechanical strain magnitude.
    Rubin CT; Lanyon LE
    Calcif Tissue Int; 1985 Jul; 37(4):411-7. PubMed ID: 3930039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain magnitude related changes in whole bone architecture in growing rats.
    Mosley JR; March BM; Lynch J; Lanyon LE
    Bone; 1997 Mar; 20(3):191-8. PubMed ID: 9071468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth rate rather than gender determines the size of the adaptive response of the growing skeleton to mechanical strain.
    Mosley JR; Lanyon LE
    Bone; 2002 Jan; 30(1):314-9. PubMed ID: 11792603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna.
    Rubin C; Gross T; Qin YX; Fritton S; Guilak F; McLeod K
    J Bone Joint Surg Am; 1996 Oct; 78(10):1523-33. PubMed ID: 8876580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle.
    Srinivasan S; Weimer DA; Agans SC; Bain SD; Gross TS
    J Bone Miner Res; 2002 Sep; 17(9):1613-20. PubMed ID: 12211431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static vs dynamic loads as an influence on bone remodelling.
    Lanyon LE; Rubin CT
    J Biomech; 1984; 17(12):897-905. PubMed ID: 6520138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuing periosteal apposition. II: The significance of peak bone mass, strain equilibrium, and age-related activity differentials for mechanical compensation in human tubular bones.
    Lazenby RA
    Am J Phys Anthropol; 1990 Aug; 82(4):473-84. PubMed ID: 2399958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology.
    Qin YX; Rubin CT; McLeod KJ
    J Orthop Res; 1998 Jul; 16(4):482-9. PubMed ID: 9747791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional strain as a determinant for bone remodeling.
    Lanyon LE
    Calcif Tissue Int; 1984; 36 Suppl 1():S56-61. PubMed ID: 6430523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone.
    Rubin CT; Lanyon LE
    J Orthop Res; 1987; 5(2):300-10. PubMed ID: 3572599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain driven transport for bone modeling at the periosteal surface.
    Banks-Sills L; Ståhle P; Svensson I; Eliaz N
    Math Biosci; 2011 Mar; 230(1):37-44. PubMed ID: 21199660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity.
    Qin YX; Kaplan T; Saldanha A; Rubin C
    J Biomech; 2003 Oct; 36(10):1427-37. PubMed ID: 14499292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of bone formation by applied dynamic loads.
    Rubin CT; Lanyon LE
    J Bone Joint Surg Am; 1984 Mar; 66(3):397-402. PubMed ID: 6699056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal strain and the functional significance of bone architecture.
    Rubin CT
    Calcif Tissue Int; 1984; 36 Suppl 1():S11-8. PubMed ID: 6430509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of bone resorption and stimulation of formation by mechanical loading of the modeling rat ulna in vivo.
    Hillam RA; Skerry TM
    J Bone Miner Res; 1995 May; 10(5):683-9. PubMed ID: 7639102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis.
    Seeman E
    Osteoporos Int; 2003; 14 Suppl 3():S2-8. PubMed ID: 12730770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of microstructural strain in cortical bone.
    Nicolella DP; Bonewald LF; Moravits DE; Lankford J
    Eur J Morphol; 2005; 42(1-2):23-9. PubMed ID: 16123021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.