These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39300566)

  • 1. Harnessing UAVs and deep learning for accurate grass weed detection in wheat fields: a study on biomass and yield implications.
    Liu T; Zhao Y; Wang H; Wu W; Yang T; Zhang W; Zhu S; Sun C; Yao Z
    Plant Methods; 2024 Sep; 20(1):144. PubMed ID: 39300566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with
    Lambert JPT; Hicks HL; Childs DZ; Freckleton RP
    Weed Res; 2018 Feb; 58(1):35-45. PubMed ID: 29527066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultrasonic system for weed detection in cereal crops.
    Andújar D; Weis M; Gerhards R
    Sensors (Basel); 2012 Dec; 12(12):17343-57. PubMed ID: 23443401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YOLOv8 Model for Weed Detection in Wheat Fields Based on a Visual Converter and Multi-Scale Feature Fusion.
    Liu Y; Zeng F; Diao H; Zhu J; Ji D; Liao X; Zhao Z
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weed detection and recognition in complex wheat fields based on an improved YOLOv7.
    Wang K; Hu X; Zheng H; Lan M; Liu C; Liu Y; Zhong L; Li H; Tan S
    Front Plant Sci; 2024; 15():1372237. PubMed ID: 38978522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.
    Xia F; Quan L; Lou Z; Sun D; Li H; Lv X
    Front Plant Sci; 2022; 13():938604. PubMed ID: 35937335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel semi-supervised framework for UAV based crop/weed classification.
    Khan S; Tufail M; Khan MT; Khan ZA; Iqbal J; Alam M
    PLoS One; 2021; 16(5):e0251008. PubMed ID: 33970938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference and economic threshold level of little seed canary grass in wheat under different sowing times.
    Hussain S; Khaliq A; Matloob A; Fahad S; Tanveer A
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):441-9. PubMed ID: 25081004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.
    Chen Y; Wu Z; Zhao B; Fan C; Shi S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intelligent spraying system for weeds in wheat fields based on a dynamic model of droplets impacting wheat leaves.
    Xie Q; Song M; Wen T; Cao W; Zhu Y; Ni J
    Front Plant Sci; 2024; 15():1420649. PubMed ID: 38947943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weed Detection Using Deep Learning: A Systematic Literature Review.
    Murad NY; Mahmood T; Forkan ARM; Morshed A; Jayaraman PP; Siddiqui MS
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of Metribuzin Doses on Physiological, Growth, and Yield Characteristics of Wheat and Its Associated Weeds.
    Javaid MM; Mahmood A; Bhatti MIN; Waheed H; Attia K; Aziz A; Nadeem MA; Khan N; Al-Doss AA; Fiaz S; Wang X
    Front Plant Sci; 2022; 13():866793. PubMed ID: 35586222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel deep learning-based method for detection of weeds in vegetables.
    Jin X; Sun Y; Che J; Bagavathiannan M; Yu J; Chen Y
    Pest Manag Sci; 2022 May; 78(5):1861-1869. PubMed ID: 35060294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tillage and residue burning affects weed populations and seed banks.
    Narwal S; Sindel BM; Jessop RS
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):715-23. PubMed ID: 17390813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images.
    Xu K; Zhu Y; Cao W; Jiang X; Jiang Z; Li S; Ni J
    Front Plant Sci; 2021; 12():732968. PubMed ID: 34804085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weed responses to fallow management in Pacific Northwest dryland cropping systems.
    San Martín C; Long DS; Gourlie JA; Barroso J
    PLoS One; 2018; 13(9):e0204200. PubMed ID: 30235310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weed target detection at seedling stage in paddy fields based on YOLOX.
    Deng X; Qi L; Liu Z; Liang S; Gong K; Qiu G
    PLoS One; 2023; 18(12):e0294709. PubMed ID: 38091355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unmanned Aerial System-Based Weed Mapping in Sod Production Using a Convolutional Neural Network.
    Zhang J; Maleski J; Jespersen D; Waltz FC; Rains G; Schwartz B
    Front Plant Sci; 2021; 12():702626. PubMed ID: 34899768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the ability of unmanned aerial systems and machine learning to map weeds at subfield scales: a test with the weed Alopecurus myosuroides (Huds).
    Lambert JP; Childs DZ; Freckleton RP
    Pest Manag Sci; 2019 Aug; 75(8):2283-2294. PubMed ID: 30972939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of different weed management strategies on weed flora of wheat-based cropping systems.
    Shahzad M; Jabran K; Hussain M; Raza MAS; Wijaya L; El-Sheikh MA; Alyemeni MN
    PLoS One; 2021; 16(2):e0247137. PubMed ID: 33600412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.