These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 39300889)

  • 1. [Physical, chemical, and biological property of silk reinforced polycaprolactone composites for bone tissue engineering].
    Tian W; He G; Liu Y; Guan J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Sep; 38(9):1123-1129. PubMed ID: 39300889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of bone screw using novel biodegradable composite orthopedic biomaterial: from material design to in vitro biomechanical and in vivo biocompatibility evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2019 Jul; 14(4):045020. PubMed ID: 30952154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/
    Qianjuan Z; Rong S; Shengxi L; Xuanhao L; Bin L; Fuxiang S
    Biomed Mater; 2024 Sep; 19(6):. PubMed ID: 39208855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers.
    Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S
    J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and evaluation of a silk fibroin-polycaprolactone biodegradable biomimetic tracheal scaffold.
    Liu CS; Feng BW; He SR; Liu YM; Chen L; Chen YL; Yao ZY; Jian MQ
    J Biomed Mater Res B Appl Biomater; 2022 Jun; 110(6):1292-1305. PubMed ID: 35061311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2017 Sep; 12(5):055011. PubMed ID: 28944766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering.
    Ansari MAA; Makwana P; Dhimmar B; Vasita R; Jain PK; Nanda HS
    J Mater Chem B; 2024 Jul; 12(28):6886-6904. PubMed ID: 38912967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
    Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB
    Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and Characterization of Composite Blends Based on Polylactic Acid/Polycaprolactone and Silk.
    Balali S; Davachi SM; Sahraeian R; Shiroud Heidari B; Seyfi J; Hejazi I
    Biomacromolecules; 2018 Nov; 19(11):4358-4369. PubMed ID: 30351912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications.
    Vyas C; Zhang J; Øvrebø Ø; Huang B; Roberts I; Setty M; Allardyce B; Haugen H; Rajkhowa R; Bartolo P
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111433. PubMed ID: 33255027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin microfiber-reinforced polycaprolactone composites with enhanced biodegradation and biological characteristics.
    Bojedla SSR; Chameettachal S; Yeleswarapu S; Nikzad M; Masood SH; Pati F
    J Biomed Mater Res A; 2022 Jul; 110(7):1386-1400. PubMed ID: 35261161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth.
    Zhang Y; Yu W; Ba Z; Cui S; Wei J; Li H
    Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation.
    Cengiz IF; Pereira H; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM
    J Mater Sci Mater Med; 2019 May; 30(6):63. PubMed ID: 31127379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.