These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Controllable Cycloadditions between 2 Cui Q; Pan TW; Shieh M; Kelly SS; Xu S; Qian WJ; Xian M Org Lett; 2022 Oct; 24(40):7334-7338. PubMed ID: 36190803 [TBL] [Abstract][Full Text] [Related]
3. Secondary Orbital Interactions Enhance the Reactivity of Alkynes in Diels-Alder Cycloadditions. Levandowski BJ; Svatunek D; Sohr B; Mikula H; Houk KN J Am Chem Soc; 2019 Feb; 141(6):2224-2227. PubMed ID: 30693769 [TBL] [Abstract][Full Text] [Related]
4. Computational and experimental investigation of the Diels-Alder cycloadditions of 4-chloro-2(H)-pyran-2-one. Afarinkia K; Bearpark MJ; Ndibwami A J Org Chem; 2003 Sep; 68(19):7158-66. PubMed ID: 12968865 [TBL] [Abstract][Full Text] [Related]
5. One-Pot Synthesis of Polycyclic 4,5-Dihydropyridazine-3(2H)-ones by Inverse Electron-Demand Diels-Alder (IEDDA) Reactions from Alkenes. Koçak R; Güney M Chemistry; 2023 Oct; 29(60):e202302096. PubMed ID: 37548107 [TBL] [Abstract][Full Text] [Related]
6. Catching up with tetrazines: coordination of Re(I) to 1,2,4-triazine facilitates an inverse electron demand Diels-Alder reaction with strained alkynes to a greater extent than in corresponding 1,2,4,5-tetrazines. Sims M; Kyriakou S; Matthews A; Deary ME; Kozhevnikov VN Dalton Trans; 2023 Aug; 52(31):10927-10932. PubMed ID: 37489645 [TBL] [Abstract][Full Text] [Related]
7. Kinetic studies of inverse electron demand Diels-Alder reactions (iEDDA) of norbornenes and 3,6-dipyridin-2-yl-1,2,4,5-tetrazine. Knall AC; Hollauf M; Slugovc C Tetrahedron Lett; 2014 Aug; 55(34):4763-4766. PubMed ID: 25152544 [TBL] [Abstract][Full Text] [Related]
8. Manipulating Diastereomeric Bicyclononynes to Sensitively Determine Enzyme Activity and Facilitate Macromolecule Conjugations. Huang CH; Hou SY; Severance S; Hwang CC; Fang BK; Gong MM; Yu SL; Weng YC; Wang LF; Dai CY; Wang SH; Kuo HT; Wang JJ; Wang TP ACS Omega; 2023 Dec; 8(48):46073-46090. PubMed ID: 38075741 [TBL] [Abstract][Full Text] [Related]
9. An experimental and computational investigation of the Diels-Alder cycloadditions of halogen-substituted 2(H)-pyran-2-ones. Afarinkia K; Bearpark MJ; Ndibwami A J Org Chem; 2005 Feb; 70(4):1122-33. PubMed ID: 15704944 [TBL] [Abstract][Full Text] [Related]
10. Effect of ring size on the exo/endo selectivity of a thermal double cycloaddition of fused pyran-2-ones. Kranjc K; Perdih F; Kocevar M J Org Chem; 2009 Aug; 74(16):6303-6. PubMed ID: 19572585 [TBL] [Abstract][Full Text] [Related]
11. Highly Electron-Deficient Pyridinium-Nitrones for Rapid and Tunable Inverse-Electron-Demand Strain-Promoted Alkyne-Nitrone Cycloaddition. Gunawardene PN; Luo W; Polgar AM; Corrigan JF; Workentin MS Org Lett; 2019 Jul; 21(14):5547-5551. PubMed ID: 31251633 [TBL] [Abstract][Full Text] [Related]
12. Electrophilic Azides for Materials Synthesis and Chemical Biology. Xie S; Sundhoro M; Houk KN; Yan M Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916 [TBL] [Abstract][Full Text] [Related]