These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39302140)

  • 21. Effect of an α-Methyl Substituent on the Dienophile on Diels-Alder
    Larrañaga O; de Cózar A
    ChemistryOpen; 2019 Jan; 8(1):49-57. PubMed ID: 30652065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-selective peptide functionalisation mediated
    Sydenham JD; Seki H; Krajcovicova S; Zeng L; Schober T; Deingruber T; Spring DR
    Chem Commun (Camb); 2024 Jan; 60(6):706-709. PubMed ID: 38108130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate.
    García-Aznar P; Escorihuela J
    Org Biomol Chem; 2022 Aug; 20(32):6400-6412. PubMed ID: 35876298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic Screening of Different Polyglycerin-Based Dienophile Macromonomers for Efficient Nanogel Formation through IEDDA Inverse Nanoprecipitation.
    Oehrl A; Schötz S; Haag R
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900510. PubMed ID: 31750985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions.
    Zhang FG; Chen Z; Tang X; Ma JA
    Chem Rev; 2021 Dec; 121(23):14555-14593. PubMed ID: 34586777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Orbital Interactions and Activation Strain (Distortion Energies) on Reactivities in the Normal and Inverse Electron-Demand Cycloadditions of Strained and Unstrained Cycloalkenes.
    Levandowski BJ; Hamlin TA; Bickelhaupt FM; Houk KN
    J Org Chem; 2017 Aug; 82(16):8668-8675. PubMed ID: 28712288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels-Alder reactions of 1,2,4,5-tetrazines.
    Liu F; Liang Y; Houk KN
    J Am Chem Soc; 2014 Aug; 136(32):11483-93. PubMed ID: 25041719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The [4+2]-Cycloaddition of α-Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Hetero-Diels-Alder Reactions-Experimental and Computational Studies.
    Mlostoń G; Urbaniak K; Jasiński M; Würthwein EU; Heimgartner H; Zimmer R; Reissig HU
    Chemistry; 2020 Jan; 26(1):237-248. PubMed ID: 31429509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inverse-Electron-Demand Diels-Alder Reactions: Principles and Applications.
    Png ZM; Zeng H; Ye Q; Xu J
    Chem Asian J; 2017 Sep; 12(17):2142-2159. PubMed ID: 28497539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Rates of Quinone-Alkyne Cycloaddition Reactions are Dictated by Entropic Factors.
    Damen JAM; Escorihuela J; Zuilhof H; van Delft FL; Albada B
    Chemistry; 2023 Jul; 29(39):e202300231. PubMed ID: 36942680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How cycloalkane fusion enhances the cycloaddition reactivity of dibenzocyclooctynes.
    Svatunek D; Murnauer A; Tan Z; Houk KN; Lang K
    Chem Sci; 2024 Feb; 15(6):2229-2235. PubMed ID: 38332832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 26-Membered Macrocycle Obtained by a Double Diels-Alder Cycloaddition Between Two 2H-Pyran-2-one Rings and Two 1,1'-(Hexane-1,6-diyl)bis (1H-pyrrole-2,5-dione)s.
    Turek BL; Kočevar M; Kranjc K; Perdih F
    Acta Chim Slov; 2017 Dec; 64(4):737-746. PubMed ID: 29318317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes.
    Dommerholt J; van Rooijen O; Borrmann A; Guerra CF; Bickelhaupt FM; van Delft FL
    Nat Commun; 2014 Nov; 5():5378. PubMed ID: 25382411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioconjugation with strained alkenes and alkynes.
    Debets MF; van Berkel SS; Dommerholt J; Dirks AT; Rutjes FP; van Delft FL
    Acc Chem Res; 2011 Sep; 44(9):805-15. PubMed ID: 21766804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperconjugative Antiaromaticity Activates 4
    Levandowski BJ; Abularrage NS; Houk KN; Raines RT
    Org Lett; 2019 Oct; 21(20):8492-8495. PubMed ID: 31589054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ruthenium-Catalyzed [2 + 2] versus Homo Diels-Alder [2 + 2 + 2] Cycloadditions of Norbornadiene and Disubstituted Alkynes: A DFT Study.
    Pounder A; Chen LD; Tam W
    ACS Omega; 2021 Jan; 6(1):900-911. PubMed ID: 33458541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions.
    Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M
    Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Omar YM; Santucci G; Afarinkia K
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How Oriented External Electric Fields Modulate Reactivity.
    Yu S; Vermeeren P; Hamlin TA; Bickelhaupt FM
    Chemistry; 2021 Mar; 27(18):5683-5693. PubMed ID: 33289179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.