These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39303255)

  • 1. Anomalous Hall Effect and Quantum Criticality in Geometrically Frustrated Heavy Fermion Metals.
    Ding W; Grefe S; Paschen S; Si Q
    Phys Rev Lett; 2024 Sep; 133(10):106504. PubMed ID: 39303255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unconventional anomalous Hall effect enhanced by a noncoplanar spin texture in the frustrated Kondo lattice Pr2Ir2O7.
    Machida Y; Nakatsuji S; Maeno Y; Tayama T; Sakakibara T; Onoda S
    Phys Rev Lett; 2007 Feb; 98(5):057203. PubMed ID: 17358893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide.
    Luo Y; Pourovskii L; Rowley SE; Li Y; Feng C; Georges A; Dai J; Cao G; Xu Z; Si Q; Ong NP
    Nat Mater; 2014 Aug; 13(8):777-81. PubMed ID: 24859644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weyl-Kondo semimetal in heavy-fermion systems.
    Lai HH; Grefe SE; Paschen S; Si Q
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):93-97. PubMed ID: 29255021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2-δAs2.
    Luo Y; Ronning F; Wakeham N; Lu X; Park T; Xu ZA; Thompson JD
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13520-4. PubMed ID: 26483465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant spontaneous Hall effect in a nonmagnetic Weyl-Kondo semimetal.
    Dzsaber S; Yan X; Taupin M; Eguchi G; Prokofiev A; Shiroka T; Blaha P; Rubel O; Grefe SE; Lai HH; Si Q; Paschen S
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33608457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Quantum Criticality Driven by Kondo Lattice Coupling in Pyrochlore Systems.
    Oh H; Lee S; Kim YB; Moon EG
    Phys Rev Lett; 2019 Apr; 122(16):167201. PubMed ID: 31075011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum phases of the Shastry-Sutherland Kondo lattice: implications for the global phase diagram of heavy-fermion metals.
    Pixley JH; Yu R; Si Q
    Phys Rev Lett; 2014 Oct; 113(17):176402. PubMed ID: 25379926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent Critical Charge Fluctuations at the Kondo Breakdown of Heavy Fermions.
    Komijani Y; Coleman P
    Phys Rev Lett; 2019 May; 122(21):217001. PubMed ID: 31283303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic quantum phase transitions in Kondo lattices.
    Si Q; Zhu JX; Grempel DR
    J Phys Condens Matter; 2005 Sep; 17(37):R1025-R1040. PubMed ID: 32397035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review.
    Shaginyan VR; Msezane AZ; Japaridze GS; Artamonov SA; Leevik YS
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy-Fermion Valence-Bond Liquids in Ultracold Atoms: Cooperation of the Kondo Effect and Geometric Frustration.
    Isaev L; Rey AM
    Phys Rev Lett; 2015 Oct; 115(16):165302. PubMed ID: 26550882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models.
    Sato T; Assaad FF; Grover T
    Phys Rev Lett; 2018 Mar; 120(10):107201. PubMed ID: 29570313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant isotropic magneto-thermal conductivity of metallic spin liquid candidate Pr
    Ni JM; Huang YY; Cheng EJ; Yu YJ; Pan BL; Li Q; Xu LM; Tian ZM; Li SY
    Nat Commun; 2021 Jan; 12(1):307. PubMed ID: 33436565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal.
    Seiro S; Jiao L; Kirchner S; Hartmann S; Friedemann S; Krellner C; Geibel C; Si Q; Steglich F; Wirth S
    Nat Commun; 2018 Aug; 9(1):3324. PubMed ID: 30127442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermi surface and antiferromagnetism in the Kondo lattice: an asymptotically exact solution in d>1 dimensions.
    Yamamoto SJ; Si Q
    Phys Rev Lett; 2007 Jul; 99(1):016401. PubMed ID: 17678170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.
    Guterding D; Jeschke HO; Valentí R
    Sci Rep; 2016 May; 6():25988. PubMed ID: 27185665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal.
    Liu E; Sun Y; Kumar N; Müchler L; Sun A; Jiao L; Yang SY; Liu D; Liang A; Xu Q; Kroder J; Süß V; Borrmann H; Shekhar C; Wang Z; Xi C; Wang W; Schnelle W; Wirth S; Chen Y; Goennenwein STB; Felser C
    Nat Phys; 2018 Nov; 14(11):1125-1131. PubMed ID: 30416534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermi-surface reconstruction without breakdown of Kondo screening at the quantum critical point.
    Watanabe H; Ogata M
    Phys Rev Lett; 2007 Sep; 99(13):136401. PubMed ID: 17930614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic signatures of quantum criticality driven by geometrical frustration.
    Tokiwa Y; Stingl C; Kim MS; Takabatake T; Gegenwart P
    Sci Adv; 2015 Apr; 1(3):e1500001. PubMed ID: 26601165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.