These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39303831)

  • 1. A viscoelastic constitutive framework for aging muscular and elastic arteries.
    Zhang W; Jadidi M; Razian SA; Holzapfel GA; Kamenskiy A; Nordsletten DA
    Acta Biomater; 2024 Oct; 188():223-241. PubMed ID: 39303831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A viscoelastic constitutive model for human femoropopliteal arteries.
    Zhang W; Jadidi M; Razian SA; Holzapfel GA; Kamenskiy A; Nordsletten DA
    Acta Biomater; 2023 Oct; 170():68-85. PubMed ID: 37699504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes.
    Desyatova A; MacTaggart J; Kamenskiy A
    Acta Biomater; 2017 Dec; 64():50-58. PubMed ID: 28974476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive description of human femoropopliteal artery aging.
    Kamenskiy A; Seas A; Deegan P; Poulson W; Anttila E; Sim S; Desyatova A; MacTaggart J
    Biomech Model Mechanobiol; 2017 Apr; 16(2):681-692. PubMed ID: 27771811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery.
    Jadidi M; Razian SA; Habibnezhad M; Anttila E; Kamenskiy A
    Acta Biomater; 2021 Jan; 119():268-283. PubMed ID: 33127484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and structural changes in human thoracic aortas with age.
    Jadidi M; Habibnezhad M; Anttila E; Maleckis K; Desyatova A; MacTaggart J; Kamenskiy A
    Acta Biomater; 2020 Feb; 103():172-188. PubMed ID: 31877371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical, structural, and physiologic differences between above and below-knee human arteries.
    Struczewska P; Razian SA; Townsend K; Jadidi M; Shahbad R; Zamani E; Gamache J; MacTaggart J; Kamenskiy A
    Acta Biomater; 2024 Mar; 177():278-299. PubMed ID: 38307479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ longitudinal pre-stretch in the human femoropopliteal artery.
    Kamenskiy A; Seas A; Bowen G; Deegan P; Desyatova A; Bohlim N; Poulson W; MacTaggart J
    Acta Biomater; 2016 Mar; 32():231-237. PubMed ID: 26766633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.
    Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of viscoelasticity on residual strain in aortic soft tissues.
    Zhang W; Sommer G; Niestrawska JA; Holzapfel GA; Nordsletten D
    Acta Biomater; 2022 Mar; 140():398-411. PubMed ID: 34823042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS
    Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical damage characterization in human femoropopliteal arteries of different ages.
    Anttila E; Balzani D; Desyatova A; Deegan P; MacTaggart J; Kamenskiy A
    Acta Biomater; 2019 May; 90():225-240. PubMed ID: 30928732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries.
    Giudici A; van der Laan KWF; van der Bruggen MM; Parikh S; Berends E; Foulquier S; Delhaas T; Reesink KD; Spronck B
    Biomech Model Mechanobiol; 2023 Oct; 22(5):1607-1623. PubMed ID: 37129690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum.
    Wang Y; Li H; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():634-641. PubMed ID: 29101895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries.
    Kamenskiy AV; Pipinos II; Dzenis YA; Phillips NY; Desyatova AS; Kitson J; Bowen R; MacTaggart JN
    Acta Biomater; 2015 Jan; 11():304-13. PubMed ID: 25301303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A viscoelastic model for human myocardium.
    Nordsletten D; Capilnasiu A; Zhang W; Wittgenstein A; Hadjicharalambous M; Sommer G; Sinkus R; Holzapfel GA
    Acta Biomater; 2021 Nov; 135():441-457. PubMed ID: 34487858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial viscoelasticity: role in the dependency of pulse wave velocity on heart rate in conduit arteries.
    Xiao H; Tan I; Butlin M; Li D; Avolio AP
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1185-H1194. PubMed ID: 28364019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages.
    Desyatova A; MacTaggart J; Poulson W; Deegan P; Lomneth C; Sandip A; Kamenskiy A
    Biomech Model Mechanobiol; 2017 Jun; 16(3):775-785. PubMed ID: 27868162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.