These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3930466)

  • 21. Restriction and modification in B. subtilis: effects on transformation and transfection with native and single-stranded DNA.
    Bron S; Luxen E; Venema G; Trautner TA
    Mol Gen Genet; 1980; 179(1):103-10. PubMed ID: 6256601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis: further characterization of unstable association between donor and recipient DNA and the involvement of the cellular membrane.
    te Riele HP; Venema G
    Mol Gen Genet; 1984; 195(1-2):200-8. PubMed ID: 6436648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescently Labeled DNA Interacts with Competence and Recombination Proteins and Is Integrated and Expressed Following Natural Transformation of Bacillus subtilis.
    Boonstra M; Vesel N; Kuipers OP
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of temperature-sensitive variants of the Bacillus subtilis dnaB gene on the replication of a low-copy-number plasmid.
    Watabe K; Forough R
    J Bacteriol; 1987 Sep; 169(9):4141-6. PubMed ID: 3040678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of LrpC from Bacillus subtilis in DNA transactions during DNA repair and recombination.
    López-Torrejón G; Martínez-Jiménez MI; Ayora S
    Nucleic Acids Res; 2006; 34(1):120-9. PubMed ID: 16407330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EMSA and single-molecule force spectroscopy study of interactions between Bacillus subtilis single-stranded DNA-binding protein and single-stranded DNA.
    Zhang W; Lü X; Zhang W; Shen J
    Langmuir; 2011 Dec; 27(24):15008-15. PubMed ID: 22054219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conserved helicase motif of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) is essential for DNA repair and recombination.
    Kooistra J; Haijema BJ; Hesseling-Meinders A; Venema G
    Mol Microbiol; 1997 Jan; 23(1):137-49. PubMed ID: 9004227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An unstable donor-recipient DNA complex in transformation of Bacillus subtilis.
    Popowski J; Venema G
    Mol Gen Genet; 1978 Oct; 166(2):119-26. PubMed ID: 106232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformation-deficient mutants of Bacillus subtilis impaired in competence-specific nuclease activities.
    Mulder JA; Venema G
    J Bacteriol; 1982 Oct; 152(1):166-74. PubMed ID: 6811548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transformation in Bacillus subtilis: different affinities for DNA-binding to competent cells and to membrane vesicles.
    López P; Ballester S; Pérez-Ureña MT; Espinosa M
    Zentralbl Mikrobiol; 1983; 138(8):643-54. PubMed ID: 6322472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cj0011c, a periplasmic single- and double-stranded DNA-binding protein, contributes to natural transformation in Campylobacter jejuni.
    Jeon B; Zhang Q
    J Bacteriol; 2007 Oct; 189(20):7399-407. PubMed ID: 17693521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of single-strand breaks in complex formation between single-stranded DNA and nucleoids of Bacillus subtilis.
    van Randen J; Wiersma K; Venema G
    Mol Gen Genet; 1984; 193(3):500-6. PubMed ID: 6423934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA synthesis in competent Bacillus subtilis cells.
    Loveday KS
    J Bacteriol; 1978 Sep; 135(3):1158-61. PubMed ID: 99432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA.
    Mortier-Barrière I; Velten M; Dupaigne P; Mirouze N; Piétrement O; McGovern S; Fichant G; Martin B; Noirot P; Le Cam E; Polard P; Claverys JP
    Cell; 2007 Sep; 130(5):824-36. PubMed ID: 17803906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of transformation of Bacillus subtilis by ethidium bromide.
    Lopez P; Perez Ureña MT; Ballester S; Espinosa M
    Microbios; 1986; 45(184-185):139-52. PubMed ID: 3090402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane protein binding to the origin region of Bacillus subtilis.
    Laffan J; Firshein W
    J Bacteriol; 1987 Sep; 169(9):4135-40. PubMed ID: 3114234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single-stranded nucleic acids.
    Birnboim HC
    J Bacteriol; 1966 Mar; 91(3):1004-11. PubMed ID: 4956329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular effects of phage phi W-14 DNA on transformation of Bacillus subtilis.
    Lopez P; Espinosa M; Piechowska M; Shugar D; Warren RA
    Mol Gen Genet; 1984; 193(1):85-91. PubMed ID: 6419026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular protein and DNA dynamics in competent Bacillus subtilis cells.
    Kidane D; Graumann PL
    Cell; 2005 Jul; 122(1):73-84. PubMed ID: 16009134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacillus subtilis RecA with DprA-SsbA antagonizes RecX function during natural transformation.
    Le S; Serrano E; Kawamura R; Carrasco B; Yan J; Alonso JC
    Nucleic Acids Res; 2017 Sep; 45(15):8873-8885. PubMed ID: 28911099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.