These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 39304726)
1. Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features. Qin S; Liu K; Chen Y; Zhou Y; Zhao W; Yan R; Xin P; Zhu Y; Wang H; Lang N Sci Rep; 2024 Sep; 14(1):21927. PubMed ID: 39304726 [TBL] [Abstract][Full Text] [Related]
2. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Fang Z; Pu H; Chen XL; Yuan Y; Zhang F; Li H Abdom Radiol (NY); 2023 Jul; 48(7):2270-2283. PubMed ID: 37085730 [TBL] [Abstract][Full Text] [Related]
3. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228 [TBL] [Abstract][Full Text] [Related]
4. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wei Q; Chen L; Hou X; Lin Y; Xie R; Yu X; Zhang H; Wen Z; Wu Y; Liu X; Chen W Insights Imaging; 2024 Jun; 15(1):163. PubMed ID: 38922456 [TBL] [Abstract][Full Text] [Related]
5. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550 [TBL] [Abstract][Full Text] [Related]
6. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer. Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710 [TBL] [Abstract][Full Text] [Related]
8. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer]. Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826 [No Abstract] [Full Text] [Related]
9. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204 [TBL] [Abstract][Full Text] [Related]
10. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
11. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192 [TBL] [Abstract][Full Text] [Related]
12. Predicting the response to neoadjuvant chemoradiation for rectal cancer using nomograms based on MRI tumour regression grade. Qin S; Chen Y; Liu K; Li Y; Zhou Y; Zhao W; Xin P; Wang Q; Lu S; Wang H; Lang N Cancer Radiother; 2024 Aug; 28(4):341-353. PubMed ID: 38981746 [TBL] [Abstract][Full Text] [Related]
13. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143 [TBL] [Abstract][Full Text] [Related]
14. A multiple-time-scale comparative study for the added value of magnetic resonance imaging-based radiomics in predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Peng W; Wan L; Wang S; Zou S; Zhao X; Zhang H Front Oncol; 2023; 13():1234619. PubMed ID: 37664046 [TBL] [Abstract][Full Text] [Related]
15. Value of perfusion parameters from golden-angle radial sparse parallel dynamic contrast-enhanced magnetic resonance imaging in predicting pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Pan YN; Gu MY; Mao QL; Wei YG; Zhang L; Tang GY Diagn Interv Radiol; 2024 Jul; 30(4):228-235. PubMed ID: 38528760 [TBL] [Abstract][Full Text] [Related]
16. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
17. Nodal staging with MRI after neoadjuvant chemo-radiotherapy for locally advanced rectal cancer: a fast and reliable method. Crimì F; Cabrelle G; Campi C; Schillaci A; Bao QR; Pepe A; Spolverato G; Pucciarelli S; Vernuccio F; Quaia E Eur Radiol; 2024 May; 34(5):3205-3214. PubMed ID: 37930408 [TBL] [Abstract][Full Text] [Related]
18. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development. Chiloiro G; Cusumano D; de Franco P; Lenkowicz J; Boldrini L; Carano D; Barbaro B; Corvari B; Dinapoli N; Giraffa M; Meldolesi E; Manfredi R; Valentini V; Gambacorta MA Radiol Med; 2022 Jan; 127(1):11-20. PubMed ID: 34725772 [TBL] [Abstract][Full Text] [Related]
19. [Construction of a model based on multipoint full-layer puncture biopsy for predicting pathological complete response after neoadjuvant therapy for locally advanced rectal cancer]. Jin Y; Zhai ZW; Sun LT; Xia PD; Hu H; Jiang CQ; Zhao BC; Qu H; Qian Q; Dai Y; Yao HW; Wang ZJ; Han JG Zhonghua Wei Chang Wai Ke Za Zhi; 2024 Apr; 27(4):403-411. PubMed ID: 38644246 [No Abstract] [Full Text] [Related]
20. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]