These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 3930580)

  • 41. Absence of interhemispheric connections of area 17 during development in the monkey.
    Dehay C; Kennedy H; Bullier J; Berland M
    Nature; 1988 Jan; 331(6154):348-50. PubMed ID: 3340181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of the cortical degeneration in the visual regions of the temporal lobe of the monkey following section of the anterior commissure and the splenium.
    Zeki SM
    J Comp Neurol; 1973 Mar; 148(2):167-75. PubMed ID: 4633680
    [No Abstract]   [Full Text] [Related]  

  • 43. Neonatal enucleation induces an asymmetric pattern of visual callosal connections in hamsters.
    Rhoades RW; Dellacroce DD
    Brain Res; 1980 Nov; 202(1):189-95. PubMed ID: 7427734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys.
    Yukie M; Iwai E
    J Comp Neurol; 1981 Sep; 201(1):81-97. PubMed ID: 7276252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphology and connections of neurons in area 17 projecting to the extrastriate areas MT and 19DM and to the superior colliculus in the monkey Callithrix jacchus.
    vogt Weisenhorn DM; Illing RB; Spatz WB
    J Comp Neurol; 1995 Nov; 362(2):233-55. PubMed ID: 8576436
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Consequences of reduced cerebral blood flow in brain development. I. Gross morphology, histology, and callosal connectivity.
    Miller B; Nagy D; Finlay BL; Chance B; Kobayashi A; Nioka S
    Exp Neurol; 1993 Dec; 124(2):326-42. PubMed ID: 7507062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The distribution of the cells of origin of callosal projections in cat visual cortex.
    Segraves MA; Rosenquist AC
    J Neurosci; 1982 Aug; 2(8):1079-89. PubMed ID: 6180149
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament.
    Bourne JA; Warner CE; Upton DJ; Rosa MG
    J Comp Neurol; 2007 Feb; 500(5):832-49. PubMed ID: 17177255
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental-anatomical studies on the "middle temporal visual area (MT)" in primates. I. Efferent cortico-cortical connections in the marmoset Callithrix jacchus.
    Spatz WB; Tigges J
    J Comp Neurol; 1972 Dec; 146(4):451-64. PubMed ID: 4628544
    [No Abstract]   [Full Text] [Related]  

  • 50. The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex.
    Ivy GO; Killackey HP
    J Comp Neurol; 1981 Jan; 195(3):367-89. PubMed ID: 6162864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus).
    Lui LL; Bourne JA; Rosa MG
    Eur J Neurosci; 2007 Mar; 25(6):1780-92. PubMed ID: 17432965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organization of visual cortex in the mouse revealed by correlating callosal and striate-extrastriate connections.
    Olavarria J; Montero VM
    Vis Neurosci; 1989 Jul; 3(1):59-69. PubMed ID: 2487092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization.
    Van Essen DC; Maunsell JH; Bixby JL
    J Comp Neurol; 1981 Jul; 199(3):293-326. PubMed ID: 7263951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cortical connections of areas 17 (V-I) and 18 (V-II) of squirrels.
    Kaas JH; Krubitzer LA; Johanson KL
    J Comp Neurol; 1989 Mar; 281(3):426-46. PubMed ID: 2703555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphology of visual callosal neurons with different locations, contralateral targets or patterns of development.
    Vercelli A; Innocenti GM
    Exp Brain Res; 1993; 94(3):393-404. PubMed ID: 8359254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation between the visual callosal connections and the retinotopic organization in striate-peristriate border region in the hamster: an anatomical and physiological study.
    Jen LS; So KF; Xiao YM; Diao YC; Wang YK; Pu ML
    Neuroscience; 1984 Dec; 13(4):1003-10. PubMed ID: 6527787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cortical, callosal, and thalamic connections from primary somatosensory cortex in the naked mole-rat (Heterocephalus glaber), with special emphasis on the connectivity of the incisor representation.
    Henry EC; Catania KC
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):626-45. PubMed ID: 16652365
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relation of callosal and striate-extrastriate cortical connections in the rat: morphological definition of extrastriate visual areas.
    Olavarria J; Montero VM
    Exp Brain Res; 1984; 54(2):240-52. PubMed ID: 6723844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A direct pathway from thalamus to visual callosal neurons in cat.
    Hornung JP; Garey LJ
    Exp Brain Res; 1980; 38(1):121-3. PubMed ID: 7351225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anatomical binding of intrinsic connections in striate cortex of tree shrews (Tupaia glis).
    Rockland KS; Lund JS; Humphrey AL
    J Comp Neurol; 1982 Jul; 209(1):41-58. PubMed ID: 7119173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.