These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 39306101)
1. A review of advancements in humic acid removal: Insights into adsorption techniques and hybrid solutions. Sabri M; Kazim H; Tawalbeh M; Al-Othman A; Almomani F Chemosphere; 2024 Oct; 365():143373. PubMed ID: 39306101 [TBL] [Abstract][Full Text] [Related]
2. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Yang S; Hu J; Chen C; Shao D; Wang X Environ Sci Technol; 2011 Apr; 45(8):3621-7. PubMed ID: 21395259 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and evaluation of a novel cross-linked biochar/ferric chloride hybrid material for integrated coagulation and adsorption of turbidity and humic acid from synthetic wastewater: Implications for sludge valorisation. Ndagijimana P; Rong H; Duan L; Li S; Nkinahamira F; Hakizimana JC; Kumar A; Aborisade MA; Ndokoye P; Cui B; Guo D; Naidu R Environ Res; 2024 Aug; 255():119134. PubMed ID: 38751002 [TBL] [Abstract][Full Text] [Related]
4. Adsorption and removal of a selected emerging contaminant, Alaghmand M; Alizadeh-Saei J; Barakat S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(13):1534-1541. PubMed ID: 33319650 [TBL] [Abstract][Full Text] [Related]
5. Enhanced adsorption of As(V) and Mn(VII) from industrial wastewater using multi-walled carbon nanotubes and carboxylated multi-walled carbon nanotubes. Egbosiuba TC; Abdulkareem AS; Kovo AS; Afolabi EA; Tijani JO; Roos WD Chemosphere; 2020 Sep; 254():126780. PubMed ID: 32353809 [TBL] [Abstract][Full Text] [Related]
6. Preliminary evaluation of the application of carbon nanotubes as potential adsorbents for the elimination of selected anticancer drugs from water matrices. Toński M; Dołżonek J; Paszkiewicz M; Wojsławski J; Stepnowski P; Białk-Bielińska A Chemosphere; 2018 Jun; 201():32-40. PubMed ID: 29518732 [TBL] [Abstract][Full Text] [Related]
7. Advancements in textile dye removal: a critical review of layered double hydroxides and clay minerals as efficient adsorbents. George G; Ealias AM; Saravanakumar MP Environ Sci Pollut Res Int; 2024 Feb; 31(9):12748-12779. PubMed ID: 38265587 [TBL] [Abstract][Full Text] [Related]
8. Adsorption studies on the treatment of battery wastewater by purified carbon nanotubes (P-CNTs) and polyethylene glycol carbon nanotubes (PEG-CNTs). Hamzat WA; Abdulkareem AS; Bankole MT; Tijani JO; Kovo AS; Abubakre OK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(9):827-839. PubMed ID: 30964379 [TBL] [Abstract][Full Text] [Related]
9. Efficient removal of Chromium(VI) from wastewater based on magnetic multiwalled carbon nanotubes coupled with deep eutectic solvents. Wang L; Zhu Y; Ma L; Hai X; Li X; Yang Z; Gao Y; Yuan M; Xiong H; Chen M; Ma X Chemosphere; 2024 Aug; 362():142732. PubMed ID: 38950746 [TBL] [Abstract][Full Text] [Related]
10. Efficient Removal of Tetracycline from Aqueous Media with a Fe₃O₄ Nanoparticles@graphene Oxide Nanosheets Assembly. Hu X; Zhao Y; Wang H; Tan X; Yang Y; Liu Y Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29194395 [TBL] [Abstract][Full Text] [Related]
11. Harnessing wood bottom ash for efficient arsenic removal from wastewater: Adsorption mechanisms and process optimisation. Lee JI; Jeong Y; Lee YJ; Lee CG; Park SJ Chemosphere; 2024 Sep; 364():143204. PubMed ID: 39209039 [TBL] [Abstract][Full Text] [Related]
12. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions. Tan YY; Abdul Raman AA; Zainal Abidin MII; Buthiyappan A Environ Sci Pollut Res Int; 2024 May; 31(25):36492-36531. PubMed ID: 38748350 [TBL] [Abstract][Full Text] [Related]
13. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties. Lin D; Li T; Yang K; Wu F J Hazard Mater; 2012 Nov; 241-242():404-10. PubMed ID: 23069335 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. Shi B; Zhuang X; Yan X; Lu J; Tang H J Environ Sci (China); 2010; 22(8):1195-202. PubMed ID: 21179958 [TBL] [Abstract][Full Text] [Related]
15. Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. Haider MIS; Liu G; Yousaf B; Arif M; Aziz K; Ashraf A; Safeer R; Ijaz S; Pikon K Environ Pollut; 2024 Sep; 356():124365. PubMed ID: 38871166 [TBL] [Abstract][Full Text] [Related]
16. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Ahmed MB; Zhou JL; Ngo HH; Guo W Sci Total Environ; 2015 Nov; 532():112-26. PubMed ID: 26057999 [TBL] [Abstract][Full Text] [Related]
17. Analog synthesis of artificial humic substances for efficient removal of mercury. Zhang S; Song J; Du Q; Cheng K; Yang F Chemosphere; 2020 Jul; 250():126606. PubMed ID: 32234628 [TBL] [Abstract][Full Text] [Related]
18. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes. Ajmani GS; Cho HH; Abbott Chalew TE; Schwab KJ; Jacangelo JG; Huang H Water Res; 2014 Aug; 59():262-70. PubMed ID: 24810742 [TBL] [Abstract][Full Text] [Related]
19. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Yu JG; Zhao XH; Yang H; Chen XH; Yang Q; Yu LY; Jiang JH; Chen XQ Sci Total Environ; 2014 Jun; 482-483():241-51. PubMed ID: 24657369 [TBL] [Abstract][Full Text] [Related]
20. Macromolecular humic acid modified nano-hydroxyapatite for simultaneous removal of Cu(II) and methylene blue from aqueous solution: Experimental design and adsorption study. Wei W; Han X; Zhang M; Zhang Y; Zhang Y; Zheng C Int J Biol Macromol; 2020 May; 150():849-860. PubMed ID: 32068055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]