These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39306751)
1. Bioinspired Bouligand-Structured Cellulose Nanocrystals/Poly(vinyl alcohol) Composite Hydrogel for Enhanced Impact Resistance. Cui P; Chen J; Fu K; Deng J; Sun T; Chen K; Yin P ACS Appl Mater Interfaces; 2024 Oct; 16(39):53022-53032. PubMed ID: 39306751 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering. Tang Y; Lu C; Xiong R ACS Nano; 2024 Jun; 18(22):14629-14639. PubMed ID: 38776427 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties. Natarajan B; Gilman JW Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277746 [TBL] [Abstract][Full Text] [Related]
4. A multiscale fracture model to reveal the toughening mechanism in bioinspired Bouligand structures. Nie Y; Li D Acta Biomater; 2024 Mar; 176():267-276. PubMed ID: 38296014 [TBL] [Abstract][Full Text] [Related]
5. Facile preparation of highly adhesive yet ultra-strong poly (vinyl alcohol)/cellulose nanocrystals composite hydrogel enabled by multiple networks structure. Lv J; Xu P; Hou D; Sun Y; Hu J; Yang J; Yan J; Li C Int J Biol Macromol; 2024 Jun; 272(Pt 2):132919. PubMed ID: 38843673 [TBL] [Abstract][Full Text] [Related]
6. Impact resistance of nanocellulose films with bioinspired Bouligand microstructures. Qin X; Marchi BC; Meng Z; Keten S Nanoscale Adv; 2019 Apr; 1(4):1351-1361. PubMed ID: 36132592 [TBL] [Abstract][Full Text] [Related]
7. Nanolignin-Facilitated Robust Hydrogels. Pan X; Li X; Wang Z; Ni Y; Wang Q ACS Nano; 2024 Sep; 18(35):24095-24104. PubMed ID: 39150717 [TBL] [Abstract][Full Text] [Related]
8. Improved Ballistic Impact Resistance of Nanofibrillar Cellulose Films with Discontinuous Fibrous Bouligand Architecture. Caviness C; Chen Y; Yang Z; Wang H; Wu Y; Meng Z J Appl Mech; 2024 Feb; 91(2):. PubMed ID: 38449742 [TBL] [Abstract][Full Text] [Related]
9. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Liu Q; Dong X; Qi H; Zhang H; Li T; Zhao Y; Li G; Zhai W Nat Commun; 2024 Apr; 15(1):3237. PubMed ID: 38622154 [TBL] [Abstract][Full Text] [Related]
10. Preparation of strong, tough and conductive soy protein isolate/poly(vinyl alcohol)-based hydrogel via the synergy of biomineralization and salting out. Deng Y; Yang M; Xiao G; Jiang X Int J Biol Macromol; 2024 Feb; 257(Pt 1):128566. PubMed ID: 38056752 [TBL] [Abstract][Full Text] [Related]
11. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels. Lin F; Wang Z; Chen J; Lu B; Tang L; Chen X; Lin C; Huang B; Zeng H; Chen Y J Mater Chem B; 2020 May; 8(18):4002-4015. PubMed ID: 32227057 [TBL] [Abstract][Full Text] [Related]
12. Strong, Tough, and Biocompatible Poly(vinyl alcohol)-Poly(vinylpyrrolidone) Multiscale Network Hydrogels Reinforced by Aramid Nanofibers. Ji D; Zhang Z; Sun J; Cao W; Wang Z; Wang X; Cao T; Han J; Zhu J ACS Appl Mater Interfaces; 2024 May; 16(19):25304-25316. PubMed ID: 38654450 [TBL] [Abstract][Full Text] [Related]
13. Molecular Chain Rearrangement-Induced In Situ Formation of Nanofibers for Improving the Strength and Toughness of Hydrogels. Meng L; Hu Y; Li W; Zhou Z; Cui S; Wang M; Chen Z; Wu Q ACS Appl Mater Interfaces; 2024 Oct; 16(39):53007-53021. PubMed ID: 39303004 [TBL] [Abstract][Full Text] [Related]
14. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors. Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113 [TBL] [Abstract][Full Text] [Related]
15. Transparent and Soft Crack-Resistant Bouligand Elastomers Inspired by Fish Scales. Shu J; Teng Q; Zhang H; Wu J; Liu Z Macromol Rapid Commun; 2024 Feb; 45(3):e2300526. PubMed ID: 37877649 [TBL] [Abstract][Full Text] [Related]
16. Design of Cellulose Nanocrystal-Based Self-Healing Nanocomposite Hydrogels and Application in Motion Sensing and Sweat Detection. Hou Z; Zhou T; Bai L; Wang W; Chen H; Yang L; Yang H; Wei D ACS Appl Mater Interfaces; 2024 Jul; 16(28):37087-37099. PubMed ID: 38958653 [TBL] [Abstract][Full Text] [Related]
17. Tough Supramolecular Hydrogels Crafted via Lignin-Induced Self-Assembly. Pan X; Pan J; Li X; Wang Z; Ni Y; Wang Q Adv Mater; 2024 Sep; 36(36):e2406671. PubMed ID: 38988151 [TBL] [Abstract][Full Text] [Related]
18. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Lu J; Hu O; Hou L; Ye D; Weng S; Jiang X Int J Biol Macromol; 2022 Nov; 221():1002-1011. PubMed ID: 36113584 [TBL] [Abstract][Full Text] [Related]
19. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. Shao C; Meng L; Wang M; Cui C; Wang B; Han CR; Xu F; Yang J ACS Appl Mater Interfaces; 2019 Feb; 11(6):5885-5895. PubMed ID: 30652853 [TBL] [Abstract][Full Text] [Related]