BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 39307)

  • 1. A monitoring test for the liability of neuroleptic drugs to induce tardive dyskinesia.
    Gunne LM; Bárány S
    Psychopharmacology (Berl); 1979 Jun; 63(3):195-8. PubMed ID: 39307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of tardive dyskinesia in Cebus apella and Macaca speciosa monkeys: a review.
    Domino EF
    Psychopharmacology Suppl; 1985; 2():217-23. PubMed ID: 2860660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathophysiology of tardive dyskinesia.
    Klawans HL; Carvey P; Tanner CM; Goetz CG
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):38-41. PubMed ID: 2858479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haloperidol-induced tardive dyskinesia in monkeys.
    Gunne LM; Bárány S
    Psychopharmacology (Berl); 1976 Nov; 50(3):237-40. PubMed ID: 826968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clozapine in tardive dyskinesia: observations from human and animal model studies.
    Tamminga CA; Thaker GK; Moran M; Kakigi T; Gao XM
    J Clin Psychiatry; 1994 Sep; 55 Suppl B():102-6. PubMed ID: 7961550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis.
    Gunne LM; Häggström JE; Sjöquist B
    Nature; 1984 May 24-30; 309(5966):347-9. PubMed ID: 6727989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulpiride on persistent neuroleptic-induced dyskinesia in monkeys.
    Häggström JE
    Acta Psychiatr Scand Suppl; 1984; 311():103-8. PubMed ID: 6142586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of acute dystonia and tardive dyskinesia in cebus monkeys.
    Bárány S; Ingvast A; Gunne LM
    Res Commun Chem Pathol Pharmacol; 1979 Aug; 25(2):269-79. PubMed ID: 115074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia.
    Bishnoi M; Chopra K; Kulkarni SK
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Aug; 32(6):1473-8. PubMed ID: 18554768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluphenazine-induced acute and tardive dyskinesias in monkeys.
    Kovacic B; Domino EF
    Psychopharmacology (Berl); 1984; 84(3):310-4. PubMed ID: 6440175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tardive dyskinesia: pathophysiology and animal models.
    Casey DE
    J Clin Psychiatry; 2000; 61 Suppl 4():5-9. PubMed ID: 10739324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of neuroleptics and of potential new antipsychotic agents (MJ 13859-1 and MJ 13980-1) on a monkey model of tardive dyskinesia.
    Kovacic B; Ruffing D; Stanley M
    J Neural Transm; 1986; 65(1):39-49. PubMed ID: 2870130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficient striatal adaptation in aminergic and glutamatergic neurotransmission is associated with tardive dyskinesia in non-human primates exposed to antipsychotic drugs.
    Lévesque C; Hernandez G; Mahmoudi S; Calon F; Gasparini F; Gomez-Mancilla B; Blanchet PJ; Lévesque D
    Neuroscience; 2017 Oct; 361():43-57. PubMed ID: 28790021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a primate model for tardive dyskinesia.
    Bárány S; Häggström JE; Gunne LM
    Acta Pharmacol Toxicol (Copenh); 1983 Feb; 52(2):86-9. PubMed ID: 6846025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroleptic-induced acute dyskinesias in squirrel monkeys: correlation with propensity to cause extrapyramidal side effects.
    Liebman J; Neale R
    Psychopharmacology (Berl); 1980; 68(1):25-9. PubMed ID: 6104837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements.
    Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2001 Sep; 428(1):81-6. PubMed ID: 11779040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroleptic-induced acute dyskinesias in rhesus monkeys.
    Porsolt RD; Jalfre M
    Psychopharmacology (Berl); 1981; 75(1):16-21. PubMed ID: 6117919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased incidence of dyskinesias and other behavioral effects of re-exposure to neuroleptic treatment in social colonies of Cebus apella monkeys.
    Linn GS; Lifshitz K; O'Keeffe RT; Lee K; Camp-Lifshitz J
    Psychopharmacology (Berl); 2001 Jan; 153(3):285-94. PubMed ID: 11271400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental tardive dyskinesia.
    Gunne LM; Häggström JE
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):48-50. PubMed ID: 2858481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain.
    Bishnoi M; Chopra K; Kulkarni SK
    Pharmacol Biochem Behav; 2008 Feb; 88(4):511-22. PubMed ID: 18022680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.