These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3930753)

  • 1. Glutaraldehyde fixation preserves the permeability properties of the ADH-induced water channels.
    Parisi M; Merot J; Bourguet J
    J Membr Biol; 1985; 86(3):239-45. PubMed ID: 3930753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The single file hypothesis and the water channels induced by antidiuretic hormone.
    Parisi M; Bourguet J
    J Membr Biol; 1983; 71(3):189-93. PubMed ID: 6601721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective fixation with glutaraldehyde of ADH-induced urea permeability sites in toad bladder.
    Eggena P
    Proc Soc Exp Biol Med; 1983 Jun; 173(2):244-51. PubMed ID: 6408646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH, transepithelial pH gradients, and ADH-induced water channels.
    Parisi M; Wietzerbin J; Bourguet J
    Am J Physiol; 1983 Jun; 244(6):F712-8. PubMed ID: 6305208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous minute by minute determination of unidirectional and net water fluxes in frog urinary bladder. A reexamination of the two barriers in series hypothesis.
    Parisi M; Bourguet J; Ripoche P; Chevalier J
    Biochim Biophys Acta; 1979 Oct; 556(3):509-23. PubMed ID: 314817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of microtubules and microfilaments in the hydrosmotic response to antidiuretic hormone.
    Parisi M; Pisam M; Mérot J; Chevalier J; Bourguet J
    Biochim Biophys Acta; 1985 Jul; 817(2):333-42. PubMed ID: 2410025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine structure of intramembranous particle aggregates in ADH-treated frog urinary bladder and skin: influence of glutaraldehyde and N-ethyl maleimide.
    Chevalier J; Adragna N; Bourguet J; Gobin R
    Cell Tissue Res; 1981; 218(3):595-606. PubMed ID: 6790173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glutaraldehyde on hydrosmotic response of toad bladder to vasopressin.
    Eggena P
    Am J Physiol; 1983 Jan; 244(1):C37-43. PubMed ID: 6295178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mercurial compounds on net water transport and intramembrane particle aggregates in ADH-treated frog urinary bladder.
    Ibarra C; Ripoche P; Bourguet J
    J Membr Biol; 1989 Sep; 110(2):115-26. PubMed ID: 2553973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of PCMBS on the water and small solute permeabilities in frog urinary bladder.
    Ibarra C; Ripoche P; Parisi M; Bourguet J
    J Membr Biol; 1990 Jun; 116(1):57-64. PubMed ID: 2165176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The water permeability of toad urinary bladder. I. Permeability of barriers in series with the luminal membrane.
    Levine SD; Jacoby M; Finkelstein A
    J Gen Physiol; 1984 Apr; 83(4):529-41. PubMed ID: 6726173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular Ca2+ concentration and the antidiuretic hormone-induced increase in water permeability: effects of ionophore A23187 and quinidine.
    Parisi M; Ibarra C; Porta M
    Biochim Biophys Acta; 1987 Dec; 905(2):399-408. PubMed ID: 2825786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfilaments and the hydrosmotic action of vasopressin in toad urinary bladder.
    Hardy MA; DiBona DR
    Am J Physiol; 1982 Sep; 243(3):C200-4. PubMed ID: 6810708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular pH and water permeability control in frog urinary bladder. A possible action on the water pathway.
    Parisi M; Montoreano R; Chevalier J; Bourguet J
    Biochim Biophys Acta; 1981 Nov; 648(2):267-74. PubMed ID: 6272853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheat germ agglutinin (WGA) reduces ADH-induced water flow and induces cell surface changes in epithelial cells of frog urinary bladder.
    Favard P; Favard N; Zhu QL; Bourguet J; Lechaire JP; Maillard M
    Biol Cell; 1989; 67(2):103-14. PubMed ID: 2631978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water permeability and particle aggregates in ADH-, cAMP-, and forskolin-treated toad bladder.
    Kachadorian WA; Coleman RA; Wade JB
    Am J Physiol; 1987 Jul; 253(1 Pt 2):F120-5. PubMed ID: 3037920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The water permeability of toad urinary bladder. II. The value of Pf/Pd(w) for the antidiuretic hormone-induced water permeation pathway.
    Levine SD; Jacoby M; Finkelstein A
    J Gen Physiol; 1984 Apr; 83(4):543-61. PubMed ID: 6726174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of specific apical membrane polypeptides associated with the antidiuretic hormone-elicited water permeability increase in the toad urinary bladder.
    Harris HW; Wade JB; Handler JS
    Proc Natl Acad Sci U S A; 1988 Mar; 85(6):1942-6. PubMed ID: 3126500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of antidiuretic hormone-dependent capacitance and water flow in toad urinary bladder.
    Palmer LG; Speez N
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F501-8. PubMed ID: 6426310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for permanent water channels in the basolateral membrane of an ADH-sensitive epithelium.
    Van der Goot F; Corman B; Ripoche P
    J Membr Biol; 1991 Feb; 120(1):59-65. PubMed ID: 1708428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.