These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3931180)

  • 1. Distribution and oxidation of malondialdehyde in mice.
    Marnett LJ; Buck J; Tuttle MA; Basu AK; Bull AW
    Prostaglandins; 1985 Aug; 30(2):241-54. PubMed ID: 3931180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of malonaldehyde in vivo and in vitro.
    Siu GM; Draper HH
    Lipids; 1982 May; 17(5):349-55. PubMed ID: 6808279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of malonic semialdehyde in man.
    Scholem RD; Brown GK
    Biochem J; 1983 Oct; 216(1):81-5. PubMed ID: 6418146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of age-related malondialdehyde oxidation: the effect of modulation by food restriction.
    Kim JW; Yu BP
    Mech Ageing Dev; 1989 Dec; 50(3):277-87. PubMed ID: 2630836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolism of malondialdehyde.
    Draper HH; McGirr LG; Hadley M
    Lipids; 1986 Apr; 21(4):305-7. PubMed ID: 3713450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and oxidation of malonaldehyde by cultured mammalian cells.
    Bird RP; Draper HH
    Lipids; 1982 Aug; 17(8):519-23. PubMed ID: 7132582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylmalonic semialdehyde dehydrogenase deficiency: demonstration of defective valine and beta-alanine metabolism and reduced malonic semialdehyde dehydrogenase activity in cultured fibroblasts.
    Gray RG; Pollitt RJ; Webley J
    Biochem Med Metab Biol; 1987 Aug; 38(1):121-4. PubMed ID: 3117077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of [U-14C]succinic semialdehyde in cultured human lymphoblasts: measurement of residual succinic semialdehyde dehydrogenase activity in 11 patients with 4-hydroxybutyric aciduria.
    Pattarelli PP; Nyhan WL; Gibson KM
    Pediatr Res; 1988 Oct; 24(4):455-60. PubMed ID: 3140205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of free brain malonate.
    Riley KM; Dickson AC; Koeppen AH
    Neurochem Res; 1991 Feb; 16(2):117-22. PubMed ID: 1679205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The role of aldehyde dehydrogenases in the malonic dialdehyde metabolism in the rat liver].
    Pirozhkov SV; Panchenko LF
    Biokhimiia; 1988 Sep; 53(9):1443-8. PubMed ID: 3203107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolism of tetradecylthiopropionic acid, a 4-thia stearic acid, in the rat. In vivo and in vitro studies.
    Hvattum E; Skrede S; Bremer J; Solbakken M
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):879-87. PubMed ID: 1417748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the rate of 14CO2 production from [14C]ethanol in rats given beta-lactam antibiotics with disulfiram-like effects.
    Turcan RG; MacDonald CM; Ings RM; Coombes JD
    Antimicrob Agents Chemother; 1985 Apr; 27(4):535-40. PubMed ID: 3923923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excessive excretion of beta-alanine and of 3-hydroxypropionic, R- and S-3-aminoisobutyric, R- and S-3-hydroxyisobutyric and S-2-(hydroxymethyl)butyric acids probably due to a defect in the metabolism of the corresponding malonic semialdehydes.
    Pollitt RJ; Green A; Smith R
    J Inherit Metab Dis; 1985; 8(2):75-9. PubMed ID: 3939535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Methoxyethanol metabolism in pregnant CD-1 mice and embryos.
    Mebus CA; Clarke DO; Stedman DB; Welsch F
    Toxicol Appl Pharmacol; 1992 Jan; 112(1):87-94. PubMed ID: 1733052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of formation of malonic dialdehyde during liposome interaction with cells].
    Konev VV; Popov GA
    Biokhimiia; 1988 Sep; 53(9):1439-42. PubMed ID: 3203106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates of catabolism calculated from 14CO2 production: artifacts and realities.
    Tomera JF; McCaffrey PG; Brunengraber H
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():285-8. PubMed ID: 6415670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of methylazoxymethanol acetate in the F344 rat and strain-2 guinea pig and its inhibition by pyrazole and disulfiram.
    Fiala ES; Stathopoulos C
    J Cancer Res Clin Oncol; 1984; 108(1):129-34. PubMed ID: 6430908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liberation of 14CO2 from 14C-fatty acids by riboflavin-deficient sucking rat pups: a study of 14C-Octanoate and 14C-palmitate oxidation in vivo.
    Patterson BE; Bates CJ
    Int J Vitam Nutr Res; 1989; 59(3):293-9. PubMed ID: 2513284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incomplete free fatty acid oxidation by ascites tumor cells under low oxygen tension.
    Ookhtens M; Baker N
    Am J Physiol; 1983 Jan; 244(1):R84-92. PubMed ID: 6295191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Expired 14CO2 and 14C-radioactivities in tissues following the intravenous injection of [1-14C]-sodium acetate in rats].
    Kuze S; Yagi Y; Ito Y; Miyahara T; Koshin M; Mori M; Kozuka H
    Masui; 1985 May; 34(5):649-55. PubMed ID: 3928936
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.