These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 39312135)
1. Riboswitch Design Using MODENA. Taneda A Methods Mol Biol; 2025; 2847():33-43. PubMed ID: 39312135 [TBL] [Abstract][Full Text] [Related]
2. Computational prediction of riboswitches. Clote P Methods Enzymol; 2015; 553():287-312. PubMed ID: 25726470 [TBL] [Abstract][Full Text] [Related]
3. Beyond Plug and Pray: Context Sensitivity and Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151 [TBL] [Abstract][Full Text] [Related]
4. Computational Methods for Modeling Aptamers and Designing Riboswitches. Gong S; Wang Y; Wang Z; Zhang W Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090 [TBL] [Abstract][Full Text] [Related]
5. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach. Kim N; Zahran M; Schlick T Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic and kinetic folding of riboswitches. Badelt S; Hammer S; Flamm C; Hofacker IL Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466 [TBL] [Abstract][Full Text] [Related]
8. Applicability of a computational design approach for synthetic riboswitches. Domin G; Findeiß S; Wachsmuth M; Will S; Stadler PF; Mörl M Nucleic Acids Res; 2017 Apr; 45(7):4108-4119. PubMed ID: 27994029 [TBL] [Abstract][Full Text] [Related]
9. A Computational Approach for Designing Synthetic Riboswitches for Next-Generation RNA Therapeutics. Mukherjee S; Mukherjee SB; Barash D Methods Mol Biol; 2025; 2847():193-204. PubMed ID: 39312145 [TBL] [Abstract][Full Text] [Related]
10. A Web Server for Designing Molecular Switches Composed of Two Interacting RNAs. Taneda A; Sato K Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800268 [TBL] [Abstract][Full Text] [Related]
11. Computational methods for prediction of RNA interactions with metal ions and small organic ligands. Philips A; Łach G; Bujnicki JM Methods Enzymol; 2015; 553():261-85. PubMed ID: 25726469 [TBL] [Abstract][Full Text] [Related]
16. The Quick and the Dead: A Guide to Fast Phasing of Small Ribozyme and Riboswitch Crystal Structures. Jenkins JL; Wedekind JE Methods Mol Biol; 2016; 1490():265-80. PubMed ID: 27665605 [TBL] [Abstract][Full Text] [Related]
17. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches. Purzycka KJ; Popenda M; Szachniuk M; Antczak M; Lukasiak P; Blazewicz J; Adamiak RW Methods Enzymol; 2015; 553():3-34. PubMed ID: 25726459 [TBL] [Abstract][Full Text] [Related]
18. Using the fast fourier transform to accelerate the computational search for RNA conformational switches. Senter E; Sheikh S; Dotu I; Ponty Y; Clote P PLoS One; 2012; 7(12):e50506. PubMed ID: 23284639 [TBL] [Abstract][Full Text] [Related]
19. A new approach for detecting riboswitches in DNA sequences. Havill JT; Bhatiya C; Johnson SM; Sheets JD; Thompson JS Bioinformatics; 2014 Nov; 30(21):3012-9. PubMed ID: 25015992 [TBL] [Abstract][Full Text] [Related]
20. Tuning the Performance of Synthetic Riboswitches using Machine Learning. Groher AC; Jager S; Schneider C; Groher F; Hamacher K; Suess B ACS Synth Biol; 2019 Jan; 8(1):34-44. PubMed ID: 30513199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]