These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 39312140)

  • 1. gRNAde: A Geometric Deep Learning Pipeline for 3D RNA Inverse Design.
    Joshi CK; Liò P
    Methods Mol Biol; 2025; 2847():121-135. PubMed ID: 39312140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gRNAde: Geometric Deep Learning for 3D RNA inverse design.
    Joshi CK; Jamasb AR; Viñas R; Harris C; Mathis S; Morehead A; Anand R; Liò P
    bioRxiv; 2024 Oct; ():. PubMed ID: 38826198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. gRNAde: Geometric Deep Learning for 3D RNA inverse design.
    Joshi CK; Jamasb AR; Viñas R; Harris C; Mathis SV; Morehead A; Anand R; Liò P
    ArXiv; 2024 Oct; ():. PubMed ID: 38827456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RiboDiffusion: tertiary structure-based RNA inverse folding with generative diffusion models.
    Huang H; Lin Z; He D; Hong L; Li Y
    Bioinformatics; 2024 Jun; 40(Suppl 1):i347-i356. PubMed ID: 38940178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Performance of Different RNA Secondary Structure Prediction Programs Using Self-cleaving Ribozymes.
    Qi F; Chen J; Chen Y; Sun J; Lin Y; Chen Z; Kapranov P
    Genomics Proteomics Bioinformatics; 2024 Sep; 22(3):. PubMed ID: 39317944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-Aided Design of Active Pseudoknotted Hammerhead Ribozymes.
    Najeh S; Zandi K; Djerroud S; Kharma N; Perreault J
    Methods Mol Biol; 2021; 2167():91-111. PubMed ID: 32712917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study.
    Yamagami R; Kayedkhordeh M; Mathews DH; Bevilacqua PC
    Nucleic Acids Res; 2019 Jan; 47(1):29-42. PubMed ID: 30462314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots.
    Kayedkhordeh M; Yamagami R; Bevilacqua PC; Mathews DH
    Methods Mol Biol; 2021; 2167():113-143. PubMed ID: 32712918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric deep learning of RNA structure.
    Townshend RJL; Eismann S; Watkins AM; Rangan R; Karelina M; Das R; Dror RO
    Science; 2021 Aug; 373(6558):1047-1051. PubMed ID: 34446608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies.
    Jain S; Tao Y; Schlick T
    J Struct Biol; 2020 Mar; 209(3):107438. PubMed ID: 31874236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting RNA sequence-structure likelihood via structure-aware deep learning.
    Zhou Y; Pedrielli G; Zhang F; Wu T
    BMC Bioinformatics; 2024 Sep; 25(1):316. PubMed ID: 39350066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pipeline for computational design of novel RNA-like topologies.
    Jain S; Laederach A; Ramos SBV; Schlick T
    Nucleic Acids Res; 2018 Aug; 46(14):7040-7051. PubMed ID: 30137633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting RNA SHAPE scores with deep learning.
    Bliss N; Bindewald E; Shapiro BA
    RNA Biol; 2020 Sep; 17(9):1324-1330. PubMed ID: 32476596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Based RNA Function Prediction Tools in rnaglib.
    Oliver C; Mallet V; Waldispühl J
    Methods Mol Biol; 2025; 2847():153-161. PubMed ID: 39312142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Increasing the Credibility of RNA Design.
    Antczak M; Szachniuk M
    Methods Mol Biol; 2025; 2847():137-151. PubMed ID: 39312141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frnakenstein: multiple target inverse RNA folding.
    Lyngsø RB; Anderson JW; Sizikova E; Badugu A; Hyland T; Hein J
    BMC Bioinformatics; 2012 Oct; 13():260. PubMed ID: 23043260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA3DB: A structurally-dissimilar dataset split for training and benchmarking deep learning models for RNA structure prediction.
    Szikszai M; Magnus M; Sanghi S; Kadyan S; Bouatta N; Rivas E
    J Mol Biol; 2024 Sep; 436(17):168552. PubMed ID: 38552946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEBFold: Computational Identification of RNA Secondary Structures for Sequences across Structural Families Using Deep Learning.
    Yang TH
    J Chem Inf Model; 2024 May; 64(9):3756-3766. PubMed ID: 38648189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.
    Yesselman JD; Das R
    Nucleic Acids Res; 2015 Jul; 43(W1):W498-501. PubMed ID: 25964298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Design of Allosteric Ribozymes via Genetic Algorithms.
    Kaloudas D; Pavlova N; Penchovsky R
    Methods Mol Biol; 2024; 2822():443-469. PubMed ID: 38907934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.