These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 39312143)

  • 1. Generative Modeling of RNA Sequence Families with Restricted Boltzmann Machines.
    Fernandez-de-Cossio-Diaz J
    Methods Mol Biol; 2025; 2847():163-175. PubMed ID: 39312143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of riboswitches.
    Clote P
    Methods Enzymol; 2015; 553():287-312. PubMed ID: 25726470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning for RNA Design: LEARNA.
    Runge F; Hutter F
    Methods Mol Biol; 2025; 2847():63-93. PubMed ID: 39312137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel riboswitch classification based on imbalanced sequences achieved by machine learning.
    Beyene SS; Ling T; Ristevski B; Chen M
    PLoS Comput Biol; 2020 Jul; 16(7):e1007760. PubMed ID: 32687488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Performance of Synthetic Riboswitches using Machine Learning.
    Groher AC; Jager S; Schneider C; Groher F; Hamacher K; Suess B
    ACS Synth Biol; 2019 Jan; 8(1):34-44. PubMed ID: 30513199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards parsimonious generative modeling of RNA families.
    Calvanese F; Lambert CN; Nghe P; Zamponi F; Weigt M
    Nucleic Acids Res; 2024 Jun; 52(10):5465-5477. PubMed ID: 38661206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structural entropy in RNA switch (Riboswitch) identification.
    Manzourolajdad A; Arnold J
    BMC Bioinformatics; 2015 Apr; 16():133. PubMed ID: 25928324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Rosetta for RNA homology modeling.
    Watkins AM; Rangan R; Das R
    Methods Enzymol; 2019; 623():177-207. PubMed ID: 31239046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.
    Weinberg Z; Nelson JW; Lünse CE; Sherlock ME; Breaker RR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2077-E2085. PubMed ID: 28265071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing Complex RNA Design Applications in the Infrared Framework.
    Yao HT; Ponty Y; Will S
    Methods Mol Biol; 2024; 2726():285-313. PubMed ID: 38780736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding consensus stable local optimal structures for aligned RNA sequences and its application to discovering riboswitch elements.
    Li Y; Zhong C; Zhang S
    Int J Bioinform Res Appl; 2014; 10(4-5):498-518. PubMed ID: 24989865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riboswitch Design Using MODENA.
    Taneda A
    Methods Mol Biol; 2025; 2847():33-43. PubMed ID: 39312135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of a ligand binding on strand migration in the SAM-I riboswitch.
    Huang W; Kim J; Jha S; Aboul-ela F
    PLoS Comput Biol; 2013; 9(5):e1003069. PubMed ID: 23704854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Based RNA Function Prediction Tools in rnaglib.
    Oliver C; Mallet V; Waldispühl J
    Methods Mol Biol; 2025; 2847():153-161. PubMed ID: 39312142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representational power of restricted boltzmann machines and deep belief networks.
    Le Roux N; Bengio Y
    Neural Comput; 2008 Jun; 20(6):1631-49. PubMed ID: 18254699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico design of ligand triggered RNA switches.
    Findeiß S; Hammer S; Wolfinger MT; Kühnl F; Flamm C; Hofacker IL
    Methods; 2018 Jul; 143():90-101. PubMed ID: 29660485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection.
    Di Gioacchino A; Procyk J; Molari M; Schreck JS; Zhou Y; Liu Y; Monasson R; Cocco S; Šulc P
    PLoS Comput Biol; 2022 Sep; 18(9):e1010561. PubMed ID: 36174101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based insights into recognition and regulation of SAM-sensing riboswitches.
    Zheng L; Song Q; Xu X; Shen X; Li C; Li H; Chen H; Ren A
    Sci China Life Sci; 2023 Jan; 66(1):31-50. PubMed ID: 36459353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.