These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 39312216)
1. Generating Synthesized Fluorescein Angiography Images From Color Fundus Images by Generative Adversarial Networks for Macular Edema Assessment. Xie X; Jiachu D; Liu C; Xie M; Guo J; Cai K; Li X; Mi W; Ye H; Luo L; Yang J; Zhang M; Zheng C Transl Vis Sci Technol; 2024 Sep; 13(9):26. PubMed ID: 39312216 [TBL] [Abstract][Full Text] [Related]
2. A Meta-Learning Approach for Classifying Multimodal Retinal Images of Retinal Vein Occlusion With Limited Data. Jiachu D; Luo L; Xie M; Xie X; Guo J; Ye H; Cai K; Zhou L; Song G; Jiang F; Huang D; Zhang M; Zheng C Transl Vis Sci Technol; 2024 Sep; 13(9):22. PubMed ID: 39297809 [TBL] [Abstract][Full Text] [Related]
3. Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation. Abdelmotaal H; Sharaf M; Soliman W; Wasfi E; Kedwany SM BMC Ophthalmol; 2022 Sep; 22(1):355. PubMed ID: 36050661 [TBL] [Abstract][Full Text] [Related]
4. Deep learning segmentation of non-perfusion area from color fundus images and AI-generated fluorescein angiography. Masayoshi K; Katada Y; Ozawa N; Ibuki M; Negishi K; Kurihara T Sci Rep; 2024 May; 14(1):10801. PubMed ID: 38734727 [TBL] [Abstract][Full Text] [Related]
5. [A new approach for studying the retinal and choroidal circulation]. Yoneya S Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089 [TBL] [Abstract][Full Text] [Related]
6. Quantity and quality of image artifacts in optical coherence tomography angiography. Enders C; Lang GE; Dreyhaupt J; Loidl M; Lang GK; Werner JU PLoS One; 2019; 14(1):e0210505. PubMed ID: 30682050 [TBL] [Abstract][Full Text] [Related]
7. Synthesizing multi-frame high-resolution fluorescein angiography images from retinal fundus images using generative adversarial networks. Li P; He Y; Wang P; Wang J; Shi G; Chen Y Biomed Eng Online; 2023 Feb; 22(1):16. PubMed ID: 36810105 [TBL] [Abstract][Full Text] [Related]
8. Visual Acuity in Retinal Vein Occlusion, Diabetic, and Uveitic Macular Edema: Central Subfield Thickness and Ellipsoid Zone Analysis. Ciulla TA; Kapik B; Grewal DS; Ip MS Ophthalmol Retina; 2021 Jul; 5(7):633-647. PubMed ID: 33130256 [TBL] [Abstract][Full Text] [Related]
9. Macular autofluorescence in eyes with cystoid macula edema, detected with 488 nm-excitation but not with 580 nm-excitation. Bessho K; Gomi F; Harino S; Sawa M; Sayanagi K; Tsujikawa M; Tano Y Graefes Arch Clin Exp Ophthalmol; 2009 Jun; 247(6):729-34. PubMed ID: 19184082 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders. Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202 [TBL] [Abstract][Full Text] [Related]
11. Wide-Field Fluorescein Angiography in the Diagnosis and Management of Retinal Vein Occlusion: A Retrospective Single-Center Study. Turczyńska MJ; Krajewski P; Brydak-Godowska JE Med Sci Monit; 2021 Jan; 27():e927782. PubMed ID: 33449920 [TBL] [Abstract][Full Text] [Related]
12. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration. Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091 [TBL] [Abstract][Full Text] [Related]
13. Comparison of foveal avascular zone between optical coherence tomography angiography and fluorescein angiography in patients with retinal vein occlusion. Werner JU; Böhm F; Lang GE; Dreyhaupt J; Lang GK; Enders C PLoS One; 2019; 14(6):e0217849. PubMed ID: 31163058 [TBL] [Abstract][Full Text] [Related]
14. The prevalence of vitreomacular adhesion in eyes with macular oedema secondary to retinal vein occlusion selected for intravitreal injections. Maggio E; Maraone G; Mete M; Vingolo EM; Grenga PL; Guerriero M; Pertile G Acta Ophthalmol; 2021 Nov; 99(7):e1154-e1161. PubMed ID: 33421346 [TBL] [Abstract][Full Text] [Related]
15. Multimodal OCT Reflectivity Analysis of the Cystoid Spaces in Cystoid Macular Edema. Farci R; Sellam A; Coscas F; Coscas GJ; Diaz G; Napoli PE; Souied E; Galantuomo MS; Fossarello M Biomed Res Int; 2019; 2019():7835372. PubMed ID: 31016197 [TBL] [Abstract][Full Text] [Related]
16. Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation. Huang K; Li M; Yu J; Miao J; Hu Z; Yuan S; Chen Q Comput Methods Programs Biomed; 2023 Feb; 229():107306. PubMed ID: 36580822 [TBL] [Abstract][Full Text] [Related]
17. Correlation between fluorescein angiography and spectral-domain optical coherence tomography in the diagnosis of cystoid macular edema. Jittpoonkuson T; Garcia PM; Rosen RB Br J Ophthalmol; 2010 Sep; 94(9):1197-200. PubMed ID: 19965832 [TBL] [Abstract][Full Text] [Related]
18. Translation of Color Fundus Photography into Fluorescein Angiography Using Deep Learning for Enhanced Diabetic Retinopathy Screening. Shi D; Zhang W; He S; Chen Y; Song F; Liu S; Wang R; Zheng Y; He M Ophthalmol Sci; 2023 Dec; 3(4):100401. PubMed ID: 38025160 [TBL] [Abstract][Full Text] [Related]
20. Ultra-Wide-Field Fluorescein Angiography-Guided Normalization of Ischemic Index Calculation in Eyes With Retinal Vein Occlusion. Wang K; Ghasemi Falavarjani K; Nittala MG; Sagong M; Wykoff CC; van Hemert J; Ip M; Sadda SR Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3278-3285. PubMed ID: 29971447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]