These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39313212)

  • 1. Effects of Stroboscopic Goggles on Standing Balance in the Spatiotemporal and Frequency Domains: An Exploratory Study.
    McCreary ME; Lapish CM; Lewis NM; Swearinger RD; Ferris DP; Pliner EM
    J Appl Biomech; 2024 Sep; ():1-8. PubMed ID: 39313212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of balance training with stroboscopic glasses on postural control in chronic ankle instability patients.
    Lee H; Han S; Page G; Bruening DA; Seeley MK; Hopkins JT
    Scand J Med Sci Sports; 2022 Mar; 32(3):576-587. PubMed ID: 34775656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Augmenting Balance Training with Stroboscopic Goggles on Postural Control in Chronic Ankle Instability Patients: A Critically Appraised Topic.
    Mohess JS; Lee H; Uzlaşir S; Wikstrom EA
    J Sport Rehabil; 2024 Aug; 33(6):467-472. PubMed ID: 38996448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stroboscopic Vision When Interacting With Multiple Moving Objects: Perturbation Is Not the Same as Elimination.
    Bennett SJ; Hayes SJ; Uji M
    Front Psychol; 2018; 9():1290. PubMed ID: 30090080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Optical Flow Perturbations on Standing Balance in People With Multiple Sclerosis.
    Elie OS; Franz JR; Selgrade BP
    J Appl Biomech; 2024 Apr; 40(2):122-128. PubMed ID: 37963452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of whole-body muscle activations following vertical perturbations during standing and walking.
    Cano Porras D; Jacobs JV; Inzelberg R; Bahat Y; Zeilig G; Plotnik M
    J Neuroeng Rehabil; 2021 May; 18(1):75. PubMed ID: 33957953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stroboscopic Vision to Induce Sensory Reweighting During Postural Control.
    Kim KM; Kim JS; Grooms DR
    J Sport Rehabil; 2017 Sep; 26(5):. PubMed ID: 28605310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered Visual Reliance Induced by Stroboscopic Glasses during Postural Control.
    Lee H; Han S; Hopkins JT
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immediate effect of adding mirror visual feedback to lateral weight-shifting training on the standing balance control of the unilateral spatial neglect model.
    Meidian AC; Yige S; Irfan M; Rahayu UB; Amimoto K
    J Phys Ther Sci; 2021 Nov; 33(11):809-817. PubMed ID: 34776614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balance Training With Stroboscopic Glasses and Neuromechanics in Patients With Chronic Ankle Instability During a Single-Legged Drop Landing.
    Lee H; Han S; Hopkins JT
    J Athl Train; 2024 Jun; 59(6):633-640. PubMed ID: 37459365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The margin of stability is affected differently when walking under quasi-random treadmill perturbations with or without full visual support.
    Wang Z; Xie H; Chien JH
    PeerJ; 2024; 12():e16919. PubMed ID: 38390385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of assistive devices on postural control following a balance disturbance along the anterior-posterior direction.
    Lee Y; Badr R; Bove B; Jewett P; Goehring M
    Gait Posture; 2021 Oct; 90():239-244. PubMed ID: 34530310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related differences in quality of standing balance using a composite score.
    Pasma JH; Bijlsma AY; van der Bij MD; Arendzen JH; Meskers CG; Maier AB
    Gerontology; 2014; 60(4):306-14. PubMed ID: 24968882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairments of Postural Balance in Surgically Treated Lumbar Disc Herniation Patients.
    Rosker ZM; Rosker J; Sarabon N
    J Appl Biomech; 2020 Aug; 36(4):228-234. PubMed ID: 32570214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small directional treadmill perturbations induce differential gait stability adaptation.
    Li J; Huang HJ
    J Neurophysiol; 2022 Jan; 127(1):38-55. PubMed ID: 34851745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation in Theta and Beta Electrocortical Activity between Visual and Physical Perturbations to Walking and Standing Balance.
    Peterson SM; Ferris DP
    eNeuro; 2018; 5(4):. PubMed ID: 30105299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standing on wedges modifies side-specific postural control in the presence of lateral external perturbations.
    Lee YJ; Liang JN; Chen B; Ganesan M; Aruin AS
    J Electromyogr Kinesiol; 2017 Oct; 36():16-24. PubMed ID: 28662461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sinusoidal Optic Flow Perturbations Reduce Transient but Not Continuous Postural Stability: A Virtual Reality-Based Study.
    Ketterer J; Ringhof S; Gehring D; Gollhofer A
    Front Physiol; 2022; 13():803185. PubMed ID: 35665227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of balance training with visual feedback during mechanically unperturbed standing on postural corrective responses.
    Sayenko DG; Masani K; Vette AH; Alekhina MI; Popovic MR; Nakazawa K
    Gait Posture; 2012 Feb; 35(2):339-44. PubMed ID: 22118729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliance on Visual Input for Balance Skill Transfer in Older Adults: EEG Connectome Analysis Using Minimal Spanning Tree.
    Chen YC; Chou YC; Hwang IS
    Front Aging Neurosci; 2021; 13():632553. PubMed ID: 33613272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.