These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39315147)
1. Investigation and thermodynamic analysis of hydrogen liquefaction cycles: Energy and exergy study. Mahboobtosi M; D Ganji D; Gorji M; Hosseinzadeh K Heliyon; 2024 Sep; 10(18):e37570. PubMed ID: 39315147 [TBL] [Abstract][Full Text] [Related]
2. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation. Dorosz P; Wojcieszak P; Malecha Z Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265145 [TBL] [Abstract][Full Text] [Related]
3. Energy and Exergy Analyses of a Solid Oxide Fuel Cell-Gas Turbine-Organic Rankine Cycle Power Plant with Liquefied Natural Gas as Heat Sink. Ahmadi MH; Sadaghiani MS; Pourfayaz F; Ghazvini M; Mahian O; Mehrpooya M; Wongwises S Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265574 [TBL] [Abstract][Full Text] [Related]
5. Technical assessment of novel organic Rankine cycle driven cascade refrigeration system using environmental friendly refrigerants: 4E and optimization approaches. Bhuvaneshwaran K; Govindasamy PK Environ Sci Pollut Res Int; 2023 Mar; 30(12):35096-35114. PubMed ID: 36525184 [TBL] [Abstract][Full Text] [Related]
6. Optimizing trigeneration energy systems: Biogas-centric methanol production via direct CO Wan Q; Liu S; Feng D; Huang X; Alotaibi MA; Liu X Sci Total Environ; 2024 Dec; 954():176206. PubMed ID: 39278498 [TBL] [Abstract][Full Text] [Related]
7. Comparison of two newly suggested power, refrigeration, and hydrogen production, for moving towards sustainability schemes using improved solar-powered evolutionary algorithm optimization. Hai T; Abd El-Salam NM; Kh TI; Chaturvedi R; El-Shafai W; Farhang B Chemosphere; 2023 Sep; 336():139160. PubMed ID: 37327820 [TBL] [Abstract][Full Text] [Related]
8. Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle. Ren J; Xu C; Qian Z; Huang W; Wang B Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920520 [TBL] [Abstract][Full Text] [Related]
9. Strategies To Improve the Performance of Hydrogen Storage Systems by Liquefaction Methods: A Comprehensive Review. Ghorbani B; Zendehboudi S; Saady NMC; Duan X; Albayati TM ACS Omega; 2023 May; 8(21):18358-18399. PubMed ID: 37273600 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System. Wang S; Fu Z Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267142 [TBL] [Abstract][Full Text] [Related]
11. Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector. Tashtoush B; Morosuk T; Chudasama J Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286476 [TBL] [Abstract][Full Text] [Related]
12. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids. Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085 [TBL] [Abstract][Full Text] [Related]
13. Exergy-Based Multi-Objective Optimization of an Organic Rankine Cycle with a Zeotropic Mixture. Fergani Z; Morosuk T; Touil D Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441094 [TBL] [Abstract][Full Text] [Related]
14. The Use of Organic Rankine Cycles for Recovering the Heat Lost in the Compression Area of a Cryogenic Air Separation Unit. Ionita C; Bucsa S; Serban A; Dobre C; Dobrovicescu A Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741469 [TBL] [Abstract][Full Text] [Related]
15. Exergy and Exergoeconomic Analyses of a Byproduct Gas-Based Combined Cycle Power Plant with Air Blade Cooling. Liu X; Liu F; Huo Z; Zhang Q ACS Omega; 2022 Feb; 7(6):4908-4920. PubMed ID: 35187310 [TBL] [Abstract][Full Text] [Related]
16. Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization. Baigh TA; Saif MJ; Mustakim A; Nanzeeba F; Khan Y; Ehsan MM Heliyon; 2024 Aug; 10(15):e35748. PubMed ID: 39170498 [TBL] [Abstract][Full Text] [Related]
17. Energy and Exergy Evaluation of a Two-Stage Axial Vapour Compressor on the LNG Carrier. Poljak I; Orović J; Mrzljak V; Bernečić D Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285889 [TBL] [Abstract][Full Text] [Related]
18. A comparative energy and exergy optimization of a supercritical-CO Valencia Ochoa G; Duarte Forero J; Rojas JP Heliyon; 2020 Jun; 6(6):e04136. PubMed ID: 32548328 [TBL] [Abstract][Full Text] [Related]
19. Comparison of exergy and exergy economic evaluation of different geothermal cogeneration systems for optimal waste energy recovery. Guo Q; Khanmohammadi S Chemosphere; 2023 Oct; 339():139586. PubMed ID: 37516323 [TBL] [Abstract][Full Text] [Related]
20. A fuel gas waste heat recovery-based multigeneration plant integrated with a LNG cold energy process, a water desalination unit, and a CO Jasim DJ; Al-Rubaye AH; Kolsi L; Khan SU; Aich W; Marefati M Heliyon; 2024 Feb; 10(4):e26692. PubMed ID: 38434081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]