These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 39315164)
1. Improvement of Li and Mn bioleaching from spent lithium-ion batteries, using step-wise addition of biogenic sulfuric acid by Naseri T; Mousavi SM Heliyon; 2024 Sep; 10(18):e37447. PubMed ID: 39315164 [TBL] [Abstract][Full Text] [Related]
2. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review. Biswal BK; Balasubramanian R Front Microbiol; 2023; 14():1197081. PubMed ID: 37323903 [TBL] [Abstract][Full Text] [Related]
3. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. Pakostova E; Graves J; Latvyte E; Maddalena G; Horsfall L Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39016549 [TBL] [Abstract][Full Text] [Related]
4. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. Naseri T; Bahaloo-Horeh N; Mousavi SM J Environ Manage; 2019 Apr; 235():357-367. PubMed ID: 30708273 [TBL] [Abstract][Full Text] [Related]
5. Enhanced bioleaching of spent Li-ion batteries using A. ferrooxidans by application of external magnetic field. Kim J; Nwe HH; Yoon CS J Environ Manage; 2024 Sep; 367():122012. PubMed ID: 39094417 [TBL] [Abstract][Full Text] [Related]
6. Recovery of phosphorus from municipal wastewater treatment sludge through bioleaching using Acidithiobacillus thiooxidans. Lee Y; Sethurajan M; van de Vossenberg J; Meers E; van Hullebusch ED J Environ Manage; 2020 Sep; 270():110818. PubMed ID: 32507739 [TBL] [Abstract][Full Text] [Related]
7. A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur. Liu Z; Liao X; Zhang Y; Li S; Ye M; Gan Q; Fang X; Mo Z; Huang Y; Liang Z; Dai W; Sun S J Environ Manage; 2024 Feb; 351():119954. PubMed ID: 38169252 [TBL] [Abstract][Full Text] [Related]
8. Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues. Kremser K; Maltschnig M; Schön H; Jandric A; Gajdosik M; Vaculovic T; Kucera J; Guebitz GM Waste Manag; 2022 May; 144():182-190. PubMed ID: 35378357 [TBL] [Abstract][Full Text] [Related]
9. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED). Pourhossein F; Mousavi SM J Hazard Mater; 2019 Oct; 378():120648. PubMed ID: 31203122 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetically divergent bacteria consortium from neutral activated sludge showed heightened potential on bioleaching spent lithium-ion batteries. Cai X; Tian L; Chen C; Huang W; Yu Y; Liu C; Yang B; Lu X; Mao Y Ecotoxicol Environ Saf; 2021 Oct; 223():112592. PubMed ID: 34364128 [TBL] [Abstract][Full Text] [Related]
11. Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNi Wang J; Cui Y; Chu H; Tian B; Li H; Zhang M; Xin B J Environ Manage; 2022 Sep; 318():115429. PubMed ID: 35717690 [TBL] [Abstract][Full Text] [Related]
12. A greener method to recover critical metals from spent lithium-ion batteries (LIBs): Synergistic leaching without reducing agents. Roshanfar M; Sartaj M; Kazemeini S J Environ Manage; 2024 Aug; 366():121862. PubMed ID: 39018847 [TBL] [Abstract][Full Text] [Related]
13. Environmentally sustainable and cost-effective recycling of Mn-rich Li-ion cells waste: Effect of carbon sources on the leaching efficiency of metals using fungal metabolites. Naseri T; Mousavi SM; Kuchta K Waste Manag; 2023 Feb; 157():47-59. PubMed ID: 36525879 [TBL] [Abstract][Full Text] [Related]
14. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Roy JJ; Cao B; Madhavi S Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562 [TBL] [Abstract][Full Text] [Related]
16. Metal recovery from spent lithium-ion batteries via two-step bioleaching using adapted chemolithotrophs from an acidic mine pit lake. Lalropuia L; Kucera J; Rassy WY; Pakostova E; Schild D; Mandl M; Kremser K; Guebitz GM Front Microbiol; 2024; 15():1347072. PubMed ID: 38348186 [TBL] [Abstract][Full Text] [Related]
17. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Moazzam P; Boroumand Y; Rabiei P; Baghbaderani SS; Mokarian P; Mohagheghian F; Mohammed LJ; Razmjou A Chemosphere; 2021 Aug; 277():130196. PubMed ID: 33784558 [TBL] [Abstract][Full Text] [Related]
18. Leaching of valuable metals from cathode active materials in spent lithium-ion batteries by levulinic acid and biological approaches. Jiang T; Shi Q; Wei Z; Shah K; Efstathiadis H; Meng X; Liang Y Heliyon; 2023 May; 9(5):e15788. PubMed ID: 37180931 [TBL] [Abstract][Full Text] [Related]
19. Bioleaching of the α-alumina layer of spent three-way catalysts as a pretreatment for the recovery of platinum group metals. Compagnone M; González-Cortés JJ; Yeste MDP; Cantero D; Ramírez M J Environ Manage; 2023 Nov; 345():118825. PubMed ID: 37634402 [TBL] [Abstract][Full Text] [Related]
20. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulfate by Acidithiobacillus thiooxidans. Pourhossein F; Mousavi SM J Hazard Mater; 2023 May; 450():131073. PubMed ID: 36867908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]