These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39315237)
1. Entropy profile of NCR 18650 cylindrical cell at various states of health. Serik Y; Adair D; Bakenov Z; Uzakbaiuly B Heliyon; 2024 Sep; 10(18):e37654. PubMed ID: 39315237 [TBL] [Abstract][Full Text] [Related]
2. A Dual-Input Neural Network for Online State-of-Charge Estimation of the Lithium-Ion Battery throughout Its Lifetime. Qian C; Xu B; Xia Q; Ren Y; Yang D; Wang Z Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079313 [TBL] [Abstract][Full Text] [Related]
3. Potentiometric measurement of entropy change for lithium batteries. Zhang XF; Zhao Y; Patel Y; Zhang T; Liu WM; Chen M; Offer GJ; Yan Y Phys Chem Chem Phys; 2017 Apr; 19(15):9833-9842. PubMed ID: 28280804 [TBL] [Abstract][Full Text] [Related]
4. State of Health Prediction of Lithium-Ion Battery Based on Deep Dilated Convolution. Fu P; Chu L; Li J; Guo Z; Hu J; Hou Z Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502139 [TBL] [Abstract][Full Text] [Related]
5. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Jafari S; Byun YC Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223 [TBL] [Abstract][Full Text] [Related]
6. Operando X-Ray Diffraction Boosting Understanding of Graphite Phase Evolution in Lithium-Ion Batteries. Wang J; Gao Y; Liu J; Liao H; Wang L; He X Small Methods; 2024 Mar; 8(3):e2301084. PubMed ID: 38037513 [TBL] [Abstract][Full Text] [Related]
7. Prediction of State of Health of Lithium-Ion Battery Using Health Index Informed Attention Model. Wei Y Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904789 [TBL] [Abstract][Full Text] [Related]
8. Estimation of lithium-ion battery health state using MHATTCN network with multi-health indicators inputs. Zhao FM; Gao DX; Cheng YM; Yang Q Sci Rep; 2024 Aug; 14(1):18391. PubMed ID: 39117700 [TBL] [Abstract][Full Text] [Related]
9. An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-ion Batteries. Naha A; Han S; Agarwal S; Guha A; Khandelwal A; Tagade P; Hariharan KS; Kolake SM; Yoon J; Oh B Sci Rep; 2020 Jun; 10(1):9526. PubMed ID: 32533023 [TBL] [Abstract][Full Text] [Related]
10. A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries. Ma G; Xu S; Yang T; Du Z; Zhu L; Ding H; Yuan Y IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35657842 [TBL] [Abstract][Full Text] [Related]
11. Degradation of thin-film lithium batteries characterised by improved potentiometric measurement of entropy change. Zhang XF; Zhao Y; Liu HY; Zhang T; Liu WM; Chen M; Patel Y; Offer GJ; Yan Y Phys Chem Chem Phys; 2018 Apr; 20(16):11378-11385. PubMed ID: 29644348 [TBL] [Abstract][Full Text] [Related]
12. Isolation of relaxation times under open-circuit conditions: Toward prognosis of nascent short circuits in Li-ion batteries. Bharathraj S; Lee M; Adiga SP; Mayya KS; Kim JH iScience; 2023 May; 26(5):106636. PubMed ID: 37192965 [TBL] [Abstract][Full Text] [Related]
13. Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation. Rashid M; Faraji-Niri M; Sansom J; Sheikh M; Widanage D; Marco J Data Brief; 2023 Jun; 48():109157. PubMed ID: 37383794 [TBL] [Abstract][Full Text] [Related]
14. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques. Hannan MA; Lipu MSH; Hussain A; Ker PJ; Mahlia TMI; Mansor M; Ayob A; Saad MH; Dong ZY Sci Rep; 2020 Mar; 10(1):4687. PubMed ID: 32170100 [TBL] [Abstract][Full Text] [Related]
15. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries. Lee JH; Lee IS Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040 [TBL] [Abstract][Full Text] [Related]
16. Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches. Zeng Y; Zhang B; Fu Y; Shen F; Zheng Q; Chalise D; Miao R; Kaur S; Lubner SD; Tucker MC; Battaglia V; Dames C; Prasher RS Nat Commun; 2023 Jun; 14(1):3229. PubMed ID: 37270603 [TBL] [Abstract][Full Text] [Related]
17. Battery-SOC Estimation for Hybrid-Power UAVs Using Fast-OCV Curve with Unscented Kalman Filters. He Z; Martín Gómez D; de la Escalera Hueso A; Flores Peña P; Lu X; Armingol Moreno JM Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514721 [TBL] [Abstract][Full Text] [Related]
18. Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. Kim SC; Kong X; Vilá RA; Huang W; Chen Y; Boyle DT; Yu Z; Wang H; Bao Z; Qin J; Cui Y J Am Chem Soc; 2021 Jul; 143(27):10301-10308. PubMed ID: 34184873 [TBL] [Abstract][Full Text] [Related]
19. Efficient state of charge estimation of lithium-ion batteries in electric vehicles using evolutionary intelligence-assisted GLA-CNN-Bi-LSTM deep learning model. Khan MK; Houran MA; Kauhaniemi K; Zafar MH; Mansoor M; Rashid S Heliyon; 2024 Aug; 10(15):e35183. PubMed ID: 39170306 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic reflection characteristics of Lithium-ion battery based on Legendre orthogonal polynomial method. Song G; Li Y; Lyu Y; Chen H; Song W; Gao J; He C Ultrasonics; 2022 Aug; 124():106736. PubMed ID: 35358842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]