These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39315604)
1. Leveraging independence in high-dimensional mixed linear regression. Wang N; Deng K; Mai Q; Zhang X Biometrics; 2024 Jul; 80(3):. PubMed ID: 39315604 [TBL] [Abstract][Full Text] [Related]
2. Joint variable selection for fixed and random effects in linear mixed-effects models. Bondell HD; Krishna A; Ghosh SK Biometrics; 2010 Dec; 66(4):1069-77. PubMed ID: 20163404 [TBL] [Abstract][Full Text] [Related]
4. Post-selection inference in regression models for group testing data. Shen Q; Gregory K; Huang X Biometrics; 2024 Jul; 80(3):. PubMed ID: 39282732 [TBL] [Abstract][Full Text] [Related]
5. Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators. Arribas-Gil A; De la Cruz R; Lebarbier E; Meza C Biometrics; 2015 Jun; 71(2):333-43. PubMed ID: 25639332 [TBL] [Abstract][Full Text] [Related]
6. Order selection and sparsity in latent variable models via the ordered factor LASSO. Hui FKC; Tanaka E; Warton DI Biometrics; 2018 Dec; 74(4):1311-1319. PubMed ID: 29750847 [TBL] [Abstract][Full Text] [Related]
7. Joint modeling of survival time and longitudinal outcomes with flexible random effects. Choi J; Zeng D; Olshan AF; Cai J Lifetime Data Anal; 2018 Jan; 24(1):126-152. PubMed ID: 28856493 [TBL] [Abstract][Full Text] [Related]
8. Variable selection for semiparametric mixed models in longitudinal studies. Ni X; Zhang D; Zhang HH Biometrics; 2010 Mar; 66(1):79-88. PubMed ID: 19397585 [TBL] [Abstract][Full Text] [Related]
9. Fast ML estimation for the mixture of factor analyzers via an ECM algorithm. Zhao JH; Yu PL IEEE Trans Neural Netw; 2008 Nov; 19(11):1956-61. PubMed ID: 19000964 [TBL] [Abstract][Full Text] [Related]
11. A general class of recapture models based on the conditional capture probabilities. Farcomeni A Biometrics; 2016 Mar; 72(1):116-24. PubMed ID: 26355633 [TBL] [Abstract][Full Text] [Related]
12. Fixed and random effects selection in mixed effects models. Ibrahim JG; Zhu H; Garcia RI; Guo R Biometrics; 2011 Jun; 67(2):495-503. PubMed ID: 20662831 [TBL] [Abstract][Full Text] [Related]
13. Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Wang L; Zhou J; Qu A Biometrics; 2012 Jun; 68(2):353-60. PubMed ID: 21955051 [TBL] [Abstract][Full Text] [Related]
14. A penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation. Chen LS; Prentice RL; Wang P Biometrics; 2014 Jun; 70(2):312-22. PubMed ID: 24471933 [TBL] [Abstract][Full Text] [Related]
15. Regression analysis of panel count data with dependent observation times. Sun J; Tong X; He X Biometrics; 2007 Dec; 63(4):1053-9. PubMed ID: 18078478 [TBL] [Abstract][Full Text] [Related]
17. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection. Tang Z; Shen Y; Zhang X; Yi N Genetics; 2017 Jan; 205(1):77-88. PubMed ID: 27799277 [TBL] [Abstract][Full Text] [Related]
18. Controlling the false discoveries in LASSO. Huang H Biometrics; 2017 Dec; 73(4):1102-1110. PubMed ID: 28182849 [TBL] [Abstract][Full Text] [Related]
19. Regularization in finite mixture of regression models with diverging number of parameters. Khalili A; Lin S Biometrics; 2013 Jun; 69(2):436-46. PubMed ID: 23556535 [TBL] [Abstract][Full Text] [Related]
20. Efficient computation of high-dimensional penalized generalized linear mixed models by latent factor modeling of the random effects. Heiling HM; Rashid NU; Li Q; Peng XL; Yeh JJ; Ibrahim JG Biometrics; 2024 Jan; 80(1):. PubMed ID: 38497825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]