These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39315799)

  • 41. Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.
    Benyamina SM; Baldacci-Cresp F; Couturier J; Chibani K; Hopkins J; Bekki A; de Lajudie P; Rouhier N; Jacquot JP; Alloing G; Puppo A; Frendo P
    Environ Microbiol; 2013 Mar; 15(3):795-810. PubMed ID: 22891731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Programmed Proteolysis of Chemotaxis Proteins in Sinorhizobium meliloti: Features in the C-Terminal Region Control McpU Degradation.
    Arapov TD; Kim J; Cronin RM; Pahima M; Scharf BE
    J Bacteriol; 2020 Aug; 202(17):. PubMed ID: 32571966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The NtrY/NtrX System of Sinorhizobium meliloti GR4 Regulates Motility, EPS I Production, and Nitrogen Metabolism but Is Dispensable for Symbiotic Nitrogen Fixation.
    Calatrava-Morales N; Nogales J; Ameztoy K; van Steenbergen B; Soto MJ
    Mol Plant Microbe Interact; 2017 Jul; 30(7):566-577. PubMed ID: 28398840
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter.
    Chao TC; Becker A; Buhrmester J; Pühler A; Weidner S
    J Bacteriol; 2004 Jun; 186(11):3609-20. PubMed ID: 15150249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Redox-sensitive fluorescent biosensors detect Sinorhizobium meliloti intracellular redox changes under free-living and symbiotic lifestyles.
    Pacoud M; Mandon K; Cazareth J; Pierre O; Frendo P; Alloing G
    Free Radic Biol Med; 2022 May; 184():185-195. PubMed ID: 35390454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti.
    Marx H; Minogue CE; Jayaraman D; Richards AL; Kwiecien NW; Siahpirani AF; Rajasekar S; Maeda J; Garcia K; Del Valle-Echevarria AR; Volkening JD; Westphall MS; Roy S; Sussman MR; Ané JM; Coon JJ
    Nat Biotechnol; 2016 Nov; 34(11):1198-1205. PubMed ID: 27748755
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti.
    Hawkins JP; Ordonez PA; Oresnik IJ
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29084855
    [No Abstract]   [Full Text] [Related]  

  • 48. The bacA gene homolog, mlr7400, in Mesorhizobium loti MAFF303099 is dispensable for symbiosis with Lotus japonicus but partially capable of supporting the symbiotic function of bacA in Sinorhizobium meliloti.
    Maruya J; Saeki K
    Plant Cell Physiol; 2010 Sep; 51(9):1443-52. PubMed ID: 20668224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host.
    Taga ME; Walker GC
    Mol Plant Microbe Interact; 2010 Dec; 23(12):1643-54. PubMed ID: 20698752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sinorhizobium meliloti SyrA mediates the transcriptional regulation of genes involved in lipopolysaccharide sulfation and exopolysaccharide biosynthesis.
    Keating DH
    J Bacteriol; 2007 Mar; 189(6):2510-20. PubMed ID: 17209018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.
    Zatakia HM; Arapov TD; Meier VM; Scharf BE
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29263102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum.
    Mitsch MJ; diCenzo GC; Cowie A; Finan TM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 28916561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The branched CcsA/CckA-ChpT-CtrA phosphorelay of Sphingomonas melonis controls motility and biofilm formation.
    Francez-Charlot A; Kaczmarczyk A; Vorholt JA
    Mol Microbiol; 2015 Jul; 97(1):47-63. PubMed ID: 25825287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti.
    Albicoro FJ; Draghi WO; Martini MC; Salas ME; Torres Tejerizo GA; Lozano MJ; López JL; Vacca C; Cafiero JH; Pistorio M; Bednarz H; Meier D; Lagares A; Niehaus K; Becker A; Del Papa MF
    J Biotechnol; 2021 Mar; 329():80-91. PubMed ID: 33539896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Proteomic Profile of the Bacterium Sinorhizobium meliloti Depends on Its Life Form and Host Plant Species].
    Antonets KS; Onishchuk OP; Kurchak ON; Volkov KV; Lykholay AN; Andreeva EA; Andronov EE; Pinaev AG; Provorov NA; Nizhnikov AA
    Mol Biol (Mosk); 2018; 52(5):898-904. PubMed ID: 30363063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular oxygen levels regulate Sinorhizobium meliloti cell division through a FixJ-dependent transcription control mechanism.
    An F; Zhang L; Zheng W; Shan D; Wang Y; Yu L; Luo L
    Biochem Biophys Res Commun; 2022 Jul; 614():132-137. PubMed ID: 35588563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium.
    Leicht O; van Teeseling MCF; Panis G; Reif C; Wendt H; Viollier PH; Thanbichler M
    PLoS Genet; 2020 Apr; 16(4):e1008724. PubMed ID: 32324740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins.
    Yurgel SN; Rice J; Kahn ML
    Mol Plant Microbe Interact; 2012 Mar; 25(3):355-62. PubMed ID: 22074345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa).
    Mendis HC; Queiroux C; Brewer TE; Davis OM; Washburn BK; Jones KM
    Mol Plant Microbe Interact; 2013 Sep; 26(9):1089-105. PubMed ID: 23656330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti.
    Schäper S; Krol E; Skotnicka D; Kaever V; Hilker R; Søgaard-Andersen L; Becker A
    J Bacteriol; 2016 Feb; 198(3):521-35. PubMed ID: 26574513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.