These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. MPSDynamics.jl: Tensor network simulations for finite-temperature (non-Markovian) open quantum system dynamics. Lacroix T; Le Dé B; Riva A; Dunnett AJ; Chin AW J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39206827 [TBL] [Abstract][Full Text] [Related]
4. Exploiting the Causal Tensor Network Structure of Quantum Processes to Efficiently Simulate Non-Markovian Path Integrals. Jørgensen MR; Pollock FA Phys Rev Lett; 2019 Dec; 123(24):240602. PubMed ID: 31922869 [TBL] [Abstract][Full Text] [Related]
5. An open quantum system theory for polarizable continuum models. Guido CA; Rosa M; Cammi R; Corni S J Chem Phys; 2020 May; 152(17):174114. PubMed ID: 32384839 [TBL] [Abstract][Full Text] [Related]
6. Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations. Xu X; Guo C; Chen R J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404199 [TBL] [Abstract][Full Text] [Related]
8. A multisite decomposition of the tensor network path integrals. Bose A; Walters PL J Chem Phys; 2022 Jan; 156(2):024101. PubMed ID: 35032978 [TBL] [Abstract][Full Text] [Related]
9. Unifying methods for optimal control in non-Markovian quantum systems via process tensors. Ortega-Taberner C; O'Neill E; Butler E; Fux GE; Eastham PR J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39344885 [TBL] [Abstract][Full Text] [Related]
10. WaveTrain: A Python package for numerical quantum mechanics of chain-like systems based on tensor trains. Riedel J; Gelß P; Klein R; Schmidt B J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37114709 [TBL] [Abstract][Full Text] [Related]
11. ACE: A general-purpose non-Markovian open quantum systems simulation toolkit based on process tensors. Cygorek M; Gauger EM J Chem Phys; 2024 Aug; 161(7):. PubMed ID: 39158046 [TBL] [Abstract][Full Text] [Related]
12. Extracting dynamical maps of non-Markovian open quantum systems. Strachan DJ; Purkayastha A; Clark SR J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39412050 [TBL] [Abstract][Full Text] [Related]
13. Non-Markovian dynamical maps: numerical processing of open quantum trajectories. Cerrillo J; Cao J Phys Rev Lett; 2014 Mar; 112(11):110401. PubMed ID: 24702332 [TBL] [Abstract][Full Text] [Related]
15. Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach. Brenes M; Min B; Anto-Sztrikacs N; Bar-Gill N; Segal D J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38916270 [TBL] [Abstract][Full Text] [Related]
16. Many-Body Quantum State Diffusion for Non-Markovian Dynamics in Strongly Interacting Systems. Flannigan S; Damanet F; Daley AJ Phys Rev Lett; 2022 Feb; 128(6):063601. PubMed ID: 35213192 [TBL] [Abstract][Full Text] [Related]
17. Open Quantum System Dynamics from Infinite Tensor Network Contraction. Link V; Tu HH; Strunz WT Phys Rev Lett; 2024 May; 132(20):200403. PubMed ID: 38829084 [TBL] [Abstract][Full Text] [Related]
18. Revealing electronic open quantum systems with subsystem TDDFT. Krishtal A; Pavanello M J Chem Phys; 2016 Mar; 144(12):124118. PubMed ID: 27036438 [TBL] [Abstract][Full Text] [Related]
19. Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation. Schröder FAYN; Turban DHP; Musser AJ; Hine NDM; Chin AW Nat Commun; 2019 Mar; 10(1):1062. PubMed ID: 30837477 [TBL] [Abstract][Full Text] [Related]
20. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM). Kramer T; Noack M; Reinefeld A; Rodríguez M; Zelinskyy Y J Comput Chem; 2018 Aug; 39(22):1779-1794. PubMed ID: 29888450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]