These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. New developments in the diagnostics for the fusion products on JET in preparation for ITER (invited). Murari A; Angelone M; Bonheure G; Cecil E; Craciunescu T; Darrow D; Edlington T; Ericsson G; Gatu-Johnson M; Gorini G; Hellesen C; Kiptily V; Mlynar J; Perez von Thun C; Pillon M; Popovichev S; Syme B; Tardocchi M; Zoita VL; Rev Sci Instrum; 2010 Oct; 81(10):10E136. PubMed ID: 21061488 [TBL] [Abstract][Full Text] [Related]
9. Coaxial CVD diamond detector for neutron diagnostics at ShenGuang III laser facility. Yu B; Liu S; Chen Z; Huang T; Jiang W; Chen B; Pu Y; Yan J; Zhang X; Song Z; Tang Q; Hou L; Ding Y; Zheng J Rev Sci Instrum; 2017 Jun; 88(6):063506. PubMed ID: 28667965 [TBL] [Abstract][Full Text] [Related]
10. Diagnostic components in harsh radiation environments: possible overlap in R&D requirements of inertial confinement and magnetic fusion systems. Bourgade JL; Costley AE; Reichle R; Hodgson ER; Hsing W; Glebov V; Decreton M; Leeper R; Leray JL; Dentan M; Hutter T; Moroño A; Eder D; Shmayda W; Brichard B; Baggio J; Bertalot L; Vayakis G; Moran M; Sangster TC; Vermeeren L; Stoeckl C; Girard S; Pien G Rev Sci Instrum; 2008 Oct; 79(10):10F304. PubMed ID: 19044617 [TBL] [Abstract][Full Text] [Related]
11. Progress and opportunities for inertial fusion energy in Europe. Tikhonchuk VT Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200013. PubMed ID: 33040654 [TBL] [Abstract][Full Text] [Related]
12. Charged particle diagnostics for inertial confinement fusion and high-energy-density physics experiments. Gatu Johnson M Rev Sci Instrum; 2023 Feb; 94(2):021104. PubMed ID: 36859013 [TBL] [Abstract][Full Text] [Related]
14. Instrument design for an inertial confinement fusion ion temperature imager. Birge N; Geppert-Kleinrath V; Danly C; Haines B; Ivancic ST; Jorgenson J; Katz J; Mendoza E; Sorce AT; Tafoya L; Wilde C; Volegov P Rev Sci Instrum; 2022 Nov; 93(11):113510. PubMed ID: 36461553 [TBL] [Abstract][Full Text] [Related]
15. An overview of shared technical challenges for magnetic and inertial fusion power plant development. Chapman IT; Walkden NR Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200019. PubMed ID: 33280568 [TBL] [Abstract][Full Text] [Related]
16. Inertial confinement fusion: a defence context. Randewich A; Lock R; Garbett W; Bethencourt-Smith D Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200012. PubMed ID: 33040656 [TBL] [Abstract][Full Text] [Related]
17. Using gamma-ray emission to measure areal density of inertial confinement fusion capsules. Hoffman NM; Wilson DC; Herrmann HW; Young CS Rev Sci Instrum; 2010 Oct; 81(10):10D332. PubMed ID: 21033852 [TBL] [Abstract][Full Text] [Related]
18. Role of neutron attenuators for gamma-ray measurements in deuterium-tritium magnetic confinement plasmas. Rigamonti D; Dal Molin A; Gorini G; Marcer G; Nocente M; Rebai M; Craciunescu T; Ghani Z; Kiptily V; Maslov M; Shevelev A; Zohar A; Tardocchi M; Rev Sci Instrum; 2022 Sep; 93(9):093515. PubMed ID: 36182493 [TBL] [Abstract][Full Text] [Related]
19. Gas scintillation mitigation in gas Cherenkov detectors for inertial confinement fusion (invited). Geppert-Kleinrath H; Kim Y; Meaney K; Rubery M; Carrera J; Mariscal E Rev Sci Instrum; 2022 Oct; 93(10):103525. PubMed ID: 36319391 [TBL] [Abstract][Full Text] [Related]
20. An accelerator based fusion-product source for development of inertial confinement fusion nuclear diagnostics. McDuffee SC; Frenje JA; Séguin FH; Leiter R; Canavan MJ; Casey DT; Rygg JR; Li CK; Petrasso RD Rev Sci Instrum; 2008 Apr; 79(4):043302. PubMed ID: 18447523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]