These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39316166)
1. A comprehensive investigation of the adsorption behaviour and mechanism of industrial waste sintering and bayer red muds for heavy metals. Guo L; Xu X; Wang Q; Yuan X; Niu C; Dong X; Liu X; Lei H; Zhou L Environ Geochem Health; 2024 Sep; 46(11):434. PubMed ID: 39316166 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the interaction mechanisms between red muds and heavy metals. Santona L; Castaldi P; Melis P J Hazard Mater; 2006 Aug; 136(2):324-9. PubMed ID: 16426746 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of Pb(II) from wastewater using a red mud modified rice-straw biochar: Influencing factors and reusability. Ahmed W; Mehmood S; Mahmood M; Ali S; Shakoor A; Núñez-Delgado A; Asghar RMA; Zhao H; Liu W; Li W Environ Pollut; 2023 Jun; 326():121405. PubMed ID: 36893974 [TBL] [Abstract][Full Text] [Related]
4. Characterization of phosphate modified red mud-based composite materials and study on heavy metal adsorption. Jin W; Yang Y; Jin J; Xu M; Zhang Z; Dong F; Shao M; Wan Y Environ Sci Pollut Res Int; 2024 Jul; 31(31):43687-43703. PubMed ID: 38904876 [TBL] [Abstract][Full Text] [Related]
5. Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre. Ramola S; Mishra T; Rana G; Srivastava RK Environ Monit Assess; 2014 Dec; 186(12):9023-39. PubMed ID: 25287188 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution. Chand P; Pakade YB Environ Sci Pollut Res Int; 2015 Jul; 22(14):10919-29. PubMed ID: 25772868 [TBL] [Abstract][Full Text] [Related]
7. Arsenic sorption by red mud-modified biochar produced from rice straw. Wu C; Huang L; Xue SG; Huang YY; Hartley W; Cui MQ; Wong MH Environ Sci Pollut Res Int; 2017 Aug; 24(22):18168-18178. PubMed ID: 28634793 [TBL] [Abstract][Full Text] [Related]
8. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Anirudhan TS; Sreekumari SS J Environ Sci (China); 2011; 23(12):1989-98. PubMed ID: 22432329 [TBL] [Abstract][Full Text] [Related]
9. Green modification of biochar with poly(aspartic acid) enhances the remediation of Cd and Pb in water and soil. Zhu X; Wang Z; Teng Y; Sun Y; Wang W; Zhang H; Chu H; Zhang J; Liu R; Zhang L J Environ Manage; 2024 Nov; 370():122642. PubMed ID: 39321681 [TBL] [Abstract][Full Text] [Related]
10. Adsorptive removal of phosphate from aqueous solutions using different types of red mud. Guo T; Yang H; Liu Q; Gu H; Wang N; Yu W; Dai Y Water Sci Technol; 2018 May; 2017(2):570-577. PubMed ID: 29851410 [TBL] [Abstract][Full Text] [Related]
11. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163 [TBL] [Abstract][Full Text] [Related]
12. Roles of red mud in remediation of contaminated soil in mining areas: Mechanisms, advances and perspectives. Zhou Y; Cui Y; Yang J; Chen L; Qi J; Zhang L; Zhang J; Huang Q; Zhou T; Zhao Y; Liu Z; Li B J Environ Manage; 2024 Apr; 356():120608. PubMed ID: 38508008 [TBL] [Abstract][Full Text] [Related]
13. Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization. El-Gendy MMAA; Abdel-Moniem SM; Ammar NS; El-Bondkly AMA Biometals; 2023 Dec; 36(6):1307-1329. PubMed ID: 37428423 [TBL] [Abstract][Full Text] [Related]
14. Evaluation on the stabilization of Zn/Ni/Cu in spinel forms: Low-cost red mud as an effective precursor. Su M; Liao CZ; Ma S; Zhang K; Tang J; Liu C; Shih K Environ Pollut; 2019 Jun; 249():144-151. PubMed ID: 30884393 [TBL] [Abstract][Full Text] [Related]
15. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters. Wang HY; Gao HW Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184 [TBL] [Abstract][Full Text] [Related]
16. Valorization of carbon soot ash for the selective capture of lead ions from industrial waste water-A waste to resource approach. Su W; Mohan BC; Prabhakar AK; Yao Z; Wang Y; Wang CH Chemosphere; 2024 Oct; 366():143443. PubMed ID: 39368498 [TBL] [Abstract][Full Text] [Related]
17. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Muya FN; Sunday CE; Baker P; Iwuoha E Water Sci Technol; 2016; 73(5):983-92. PubMed ID: 26942518 [TBL] [Abstract][Full Text] [Related]
18. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency. Bai X; Lin J; Zhang Z; Zhan Y Environ Sci Pollut Res Int; 2022 Jul; 29(34):51793-51814. PubMed ID: 35254614 [TBL] [Abstract][Full Text] [Related]
20. Effect mechanism of litter extract from Alternanthera philoxeroides on the selective absorption of heavy metal ions by amphoteric purple soil. Wang YF; Li WB; Deng HY; Zhu L; Li JQ; Guo MT; Liu ZF J Environ Manage; 2022 Nov; 321():115970. PubMed ID: 35969972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]