These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 3931628)
41. Water coordination by heme iron in metmyoglobin. Peisach J; Mims WB; Davis JL J Biol Chem; 1984 Mar; 259(5):2704-6. PubMed ID: 6321478 [TBL] [Abstract][Full Text] [Related]
42. Kinetics of conformation change in cyanometmyoglobin following electron transfer monitored by magnetically induced circular dichroism spectrometry. Nishiyama K; Hawkridge FM Biochem Biophys Res Commun; 1994 Dec; 205(3):1724-8. PubMed ID: 7811257 [TBL] [Abstract][Full Text] [Related]
43. [Characterization of membrane-bound Fe(III)-EDTA reductase activities of the thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens]. Gavrilov SN; Slobodkin AI; Robb FT; de Vries S Mikrobiologiia; 2007; 76(2):164-71. PubMed ID: 17583211 [TBL] [Abstract][Full Text] [Related]
44. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
45. Analysis of the high- and low-spin Soret bands of horse-heart metmyoglobin complexes. Anusiem AC; Kelleher M Biopolymers; 1984 Jul; 23(7):1147-67. PubMed ID: 6466762 [No Abstract] [Full Text] [Related]
46. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction. Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804 [TBL] [Abstract][Full Text] [Related]
47. Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite. Kilinc K; Kilinc A; Wolf RE; Grisham MB Biochem Biophys Res Commun; 2001 Jul; 285(2):273-6. PubMed ID: 11444837 [TBL] [Abstract][Full Text] [Related]
48. Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid-alkaline transition in metmyoglobin. Shibata T; Nagao S; Fukaya M; Tai H; Nagatomo S; Morihashi K; Matsuo T; Hirota S; Suzuki A; Imai K; Yamamoto Y J Am Chem Soc; 2010 May; 132(17):6091-8. PubMed ID: 20392104 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of the metmyoglobin-induced peroxidation of linoleic acid by dietary antioxidants: Action in the aqueous vs. lipid phase. Vulcain E; Goupy P; Caris-Veyrat C; Dangles O Free Radic Res; 2005 May; 39(5):547-63. PubMed ID: 16036331 [TBL] [Abstract][Full Text] [Related]
51. Thermodynamics of the reaction of ferric myoglobin from Aplysia limacina with azide and fluoride. Dependence of enthalpy changes on pH. Ascenzi P; Brunori M; Giacometti GM J Mol Biol; 1985 Apr; 182(4):607-9. PubMed ID: 4009716 [TBL] [Abstract][Full Text] [Related]
52. Reduction of NOx in Fe-EDTA and Fe-NTA solutions by an enriched bacterial population. Chandrashekhar B; Pai P; Morone A; Sahu N; Pandey RA Bioresour Technol; 2013 Feb; 130():644-51. PubMed ID: 23334022 [TBL] [Abstract][Full Text] [Related]
53. Ligand binding to catalase and metmyoglobin. Direct measurements of proton involvement. Millar F; Wrigglesworth JM; Nicholls P Eur J Biochem; 1981 Jun; 117(1):13-7. PubMed ID: 7262080 [TBL] [Abstract][Full Text] [Related]
59. Direct observation of reduction of met- and ferrylmyoglobins in the hemoglobin-free perfused rat heart. Tamura M; Araki R; Ishikawa T; Sagisaka K; Yamazaki I J Biochem; 1980 Oct; 88(4):1211-3. PubMed ID: 7451416 [TBL] [Abstract][Full Text] [Related]
60. Nitric oxide reduction in BioDeNOx reactors: kinetics and mechanism. van der Maas P; Manconi I; Klapwijk B; Lens P Biotechnol Bioeng; 2008 Aug; 100(6):1099-107. PubMed ID: 18553393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]