BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3931638)

  • 21. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose.
    Roth NJ; Huber RE
    J Biol Chem; 1996 Jun; 271(24):14296-301. PubMed ID: 8662937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. E461H-beta-galactosidase (Escherichia coli): altered divalent metal specificity and slow but reversible metal inactivation.
    Martinez-Bilbao M; Gaunt MT; Huber RE
    Biochemistry; 1995 Oct; 34(41):13437-42. PubMed ID: 7577931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalysis by the large subunit of the second beta-galactosidase of Escherichia coli in the absence of the small subunit.
    Calugaru SV; Hall BG; Sinnott ML
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):281-6. PubMed ID: 7492325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta-galactosidases (Escherichia coli) with double substitutions show that Tyr-503 acts independently of Glu-461 but cooperatively with Glu-537.
    Roth NJ; Penner RM; Huber RE
    J Protein Chem; 2003 Nov; 22(7-8):663-8. PubMed ID: 14714733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional properties of beta-galactosidase from mutant strain 13 PO of Escherichia coli.
    Deschavanne PJ; Viratelle OM; Yon JM
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1892-6. PubMed ID: 25441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Galactosylation of thiol group by beta-galactosidase.
    Nakano H; Shizuma M; Kiso T; Kitahata S
    Biosci Biotechnol Biochem; 2000 Apr; 64(4):735-40. PubMed ID: 10830485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis.
    Roth NJ; Rob B; Huber RE
    Biochemistry; 1998 Jul; 37(28):10099-107. PubMed ID: 9665715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved beta-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event.
    Li BF; Holdup D; Morton CA; Sinnott ML
    Biochem J; 1989 May; 260(1):109-14. PubMed ID: 2505746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of an artificial bifunctional enzyme, beta-galactosidase/galactokinase, prepared by gene fusion.
    Bülow L
    Eur J Biochem; 1987 Mar; 163(3):443-8. PubMed ID: 3104037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrolysis of beta-galactosyl ester linkage by beta-galactosidases.
    Kiso T; Nakano H; Nakajima H; Terai T; Okamoto K; Kitahata S
    Biosci Biotechnol Biochem; 2000 Aug; 64(8):1702-6. PubMed ID: 10993159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of the newly evolved ebg beta-galactosidase of Escherichia coli K-12.
    Arraj JA; Campbell JH
    J Bacteriol; 1975 Nov; 124(2):849-56. PubMed ID: 241745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli.
    Gebler JC; Aebersold R; Withers SG
    J Biol Chem; 1992 Jun; 267(16):11126-30. PubMed ID: 1350782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrolysis of D-galactosides in an open tubular lactase reactor.
    Ngo TT; Narinesingh D; Laidler KJ
    Biotechnol Bioeng; 1976 Jan; 18(1):119-27. PubMed ID: 1044283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immediate stoichiometric appearance of beta-galactosidase products in the medium of Escherichia coli cells incubated with lactose.
    Huber RE; Pisko-Dubienski R; Hurlburt KL
    Biochem Biophys Res Commun; 1980 Sep; 96(2):656-61. PubMed ID: 6775629
    [No Abstract]   [Full Text] [Related]  

  • 35. Miniaturization of beta-galactosidase immunoassays using chromogenic and fluorogenic substrates.
    Labrousse H; Guesdon JL; Ragimbeau J; Avrameas S
    J Immunol Methods; 1982; 48(2):133-47. PubMed ID: 6799580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Affinity labelling of beta-D-galactosidase from Escherichia coli with O-nitrophenyl beta-D-[6-3H] galactopyranoside.
    Kurz G; Lehmann J; Vorberg E
    Carbohydr Res; 1982 Dec; 110(2):C21-4. PubMed ID: 6817916
    [No Abstract]   [Full Text] [Related]  

  • 37. Interaction of divalent cations with beta-galactosidase (Escherichia coli).
    Huber RE; Parfett C; Woulfe-Flanagan H; Thompson DJ
    Biochemistry; 1979 Sep; 18(19):4090-5. PubMed ID: 114210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The activation of beta-galactosidase (E. coli) by Mg(2+) at lower pH values.
    Martinez-Bilbao M; Huber RE
    Biochem Cell Biol; 1996; 74(2):295-8. PubMed ID: 9213440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of galactose and glucose on the hydrolysis reaction of a thermostable beta-galactosidase from Caldicellulosiruptor saccharolyticus.
    Park AR; Oh DK
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1427-35. PubMed ID: 19662397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screening novel β-galactosidases from a sequence-based metagenome and characterization of an alkaline β-galactosidase for the enzymatic synthesis of galactooligosaccharides.
    Liu P; Wang W; Zhao J; Wei D
    Protein Expr Purif; 2019 Mar; 155():104-111. PubMed ID: 30529535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.