These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 39316496)

  • 1. Reinforced Metapath Optimization in Heterogeneous Information Networks for Drug-Target Interaction Prediction.
    Xu B; Chen J; Wang Y; Fu Q; Lu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Sep; PP():. PubMed ID: 39316496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MECCH: Metapath Context Convolution-based Heterogeneous Graph Neural Networks.
    Fu X; King I
    Neural Netw; 2024 Feb; 170():266-275. PubMed ID: 38000310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction.
    Li M; Cai X; Xu S; Ji H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MIGP: Metapath Integrated Graph Prompt Neural Network.
    Lai PY; Dai QY; Lu YH; Wang ZH; Chen MS; Wang CD
    Neural Netw; 2024 Nov; 179():106595. PubMed ID: 39159535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks.
    Yao D; Deng Y; Zhan X; Zhan X
    BMC Bioinformatics; 2024 Jan; 25(1):46. PubMed ID: 38287236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction.
    Chen Y; Lei X
    Front Microbiol; 2022; 13():919380. PubMed ID: 35711758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction.
    Liang S; Liu S; Song J; Lin Q; Zhao S; Li S; Li J; Liang S; Wang J
    BMC Bioinformatics; 2023 Sep; 24(1):335. PubMed ID: 37697297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised Embedding Learning for Large-Scale Heterogeneous Networks Based on Metapath Graph Sampling.
    Zhong H; Wang M; Zhang X
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Disease-Metabolite Associations Based on the Metapath Aggregation of Tripartite Heterogeneous Networks.
    Liu W; Lu P
    Interdiscip Sci; 2024 Dec; 16(4):829-843. PubMed ID: 39112911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-view contrastive learning for heterogeneous network embedding.
    Li Q; Chen W; Fang Z; Ying C; Wang C
    Sci Rep; 2023 Apr; 13(1):6732. PubMed ID: 37185784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-HGT: Metapath-aware HyperGraph Transformer for heterogeneous information network embedding.
    Liu J; Song L; Wang G; Shang X
    Neural Netw; 2023 Jan; 157():65-76. PubMed ID: 36334540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction.
    Zhang R; Wang Z; Wang X; Meng Z; Cui W
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36892155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPCDA: Prediction of circRNA-disease associations by utilizing attention mechanisms on metapaths.
    Lu P; Zhang W; Wu J
    Comput Biol Chem; 2024 Feb; 108():107989. PubMed ID: 38016366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metapaths: similarity search in heterogeneous knowledge graphs via meta-paths.
    Noori A; Li MM; Tan ALM; Zitnik M
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37140542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction.
    Zhao X; Zhao X; Yin M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bitcoin Money Laundering Detection via Subgraph Contrastive Learning.
    Ouyang S; Bai Q; Feng H; Hu B
    Entropy (Basel); 2024 Feb; 26(3):. PubMed ID: 38539723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks.
    Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y
    Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion.
    Li X; Wang J; Tan J; Ji S; Jia H
    Multimed Tools Appl; 2022; 81(30):43753-43775. PubMed ID: 35668823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.
    E Z; Qiao G; Wang G; Li Y
    Methods; 2024 Mar; 223():136-145. PubMed ID: 38360082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.